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1Introduction

Data can be seen as a medium of information containing insights about

a specific phenomenon. They can take various forms and are typi-

cally represented as raw numbers (such as physical quantities, like tem-

perature, describing a phenomenon) or characters (e.g. words in a text).

Regardless of their forms, a challenge then lies in their analysis, in order

to create an intuitive understanding about what they describe. Through

this process, we say that data becomes information, providing knowledge

about a particular subject after undergoing analysis.

In this context, this thesis aims at developping tools to analyze and

visualize data in order to ease the understanding of the underlying phe-

nomenom they represent. Specifically, we use topological methods, allow-

ing to extract in a concise manner the important information from the

data, hence facilitating their analysis and visualization by focusing on the

main features of interest. An analogy can be made to understand the in-

tuition behind these methods, intuitively, by how we look at an image

representing a face for instance. The raw data contained in the image is

a collection of pixels, yet, we do not need to examine each pixel individ-

ually for a comprehensive understanding of the image, as this would be

excessively time-consuming and not really informative. Instead, we find,

and look at, structures in the face, like the eyes, the mouth and so on, and

how these structures are organized together in the image. Through this

action, we move towards a higher level of abstraction, from the raw pixels

to distinct, intuitive and meaningful structures in the image.

Topological methods allow that kind of abstraction in a more general

context, by encoding the structures within the data in a compact repre-

sentation. They allow to visually convey the extracted information and to

perform the analysis on a more relevant level of details.

1



2 Chapter 1. Introduction

1.1 General Context and Motivations

1.1.1 Data Collection, Analysis and Visualization

The process of data collection has evolved significantly over time. In the

past, data collection relied on manual methods and elementary tools like

thermometers, barometers and so on, making the data acquisition pro-

cess difficult. However, with the advent of modern technology, we have

witnessed a transformation in data collection. Today, an ensemble of ad-

vanced sensors, electronic devices and remote monitoring systems enables

the easier capture of data with greater accuracy and on a larger scale.

In addition to real-world data, numerical simulations have become an

indispensable tool in scientific research and various industries. Data sim-

ulation involves the generation of synthetic data through mathematical

models and computational techniques. This approach allows researchers

to explore scenarios that may be difficult or even impossible to replicate

in the physical world. Simulation facilitates controlled experimentation,

parameter sensitivity analysis, and hypotheses testing, contributing sig-

nificantly to the understanding of complex systems and phenomena.

This evolution in data acquisition and simulation has opened new pos-

sibilities, making large-scale data analysis essential, in order to automat-

ically discover patterns, extract insights, and make informed decisions

from data. In that context, methods from machine learning and data min-

ing, usually based on statistical models, can help that process. Such as

clustering, revealing the main trends from data by uncovering inherent

patterns and structures within, or dimensionality reduction, creating a vi-

sual map indicating how the data measurements are organized regarding

each other. These techniques have improved fields such as healthcare, as-

tronomy, and natural language processing, giving the possibility to extract

valuable knowledge from vast datasets and solve complex problems.

In addition to these tools, data visualization plays a crucial role in

data analysis, in order to extract information, insights, and trends hid-

den within datasets, by transforming raw data into visual representations.

With the development of advanced visualization tools, dynamic and in-

teractive visualizations can be created to explore data and enhance their

interpretability, giving a deeper and more intuitive understanding to those

analyzing complex datasets. It can also help in decision-making and com-

munication of findings with visuals such as charts, graphs, and maps,

making complex information more accessible and understandable.
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1.1.2 Topological Data Representations

Wether they are acquired or simulated, modern datasets are constantly

gaining in detail and complexity, as a consequence of the continuous

improvement of acquisition devices or computing resources. This geo-

metrical complexity is a difficulty for interactive data analysis and in-

terpretation. This observation motivates the development of concise yet

informative data representations, capable of encoding the main features

of interest and visually representing them to the users. In that regard,

Topological Data Analysis (TDA) [EH09] has demonstrated its ability to

generically, robustly and efficiently reveal implicit structural patterns hid-

den in complex datasets, in particular in support of analysis and visu-

alization tasks [HLH+
16]. Examples of successful applications include

turbulent combustion [LBM+
06, BWT+

11, GBG+
14], material sciences

[GDN+
07, GKL+

16, FGT16], nuclear energy [MWR+
16], fluid dynamics

[KRHH11], bioimaging [CSvdP04, BDSS18, AAPW18], quantum chem-

istry [GABCG+
14, BGL+

18, OGT19] or astrophysics [Sou11, SPN+
16].

Among the feature representations studied in TDA, the merge tree

[CSA00] (Figure 2.7), is a popular instance in the visualization commu-

nity [CSvdP04, BWT+
11, BDSS18]. It concisely and visually encodes the

number and salience of the features of interest found in the data and also

describes how these features are globally connected.

In many applications, on top of the increasing geometrical data com-

plexity, an additional challenge emerges, related to ensemble datasets. These

describe a phenomenon not only with a single dataset, but with a col-

lection of datasets, called ensemble members, in order to characterize the

variability of the phenomenon under study. In principle, a topological

representation (like the merge tree) can be computed for each ensem-

ble member. While this strategy has several practical advantages (direct

representations of the features of interest, reduced memory footprint), it

shifts the analysis problem from an ensemble of datasets to an ensemble

of merge trees.

1.1.3 The TORI Project

Throughout the recent years, a momentous increase in the amount of ac-

quired or simulated data have taken place while their exploitation speed

has not grown as much [CCF+
13]. That difference in speed leads to a ma-

jor bottleneck in the scientific computing pipeline, leaving a large quantity

of data unexploited and unanalyzed.
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In light of these challenges, the TORI Project1 (In-Situ Topological Re-

duction of Scientific 3D Data) aims to tackle them using topological meth-

ods. Specifically, with the goal of reducing this bottleneck, it is mainly

motivated by the use of topological representations of the data, that have

a memory size orders of magnitude smaller than those of the datasets

themselves (hence reducing the quantity of data at hand). TORI is focused

on two main axes (i) scaling topological methods to reduce the exploita-

tion speed (such as creating approximate methods or parallelizing existing

methods in a high-performance setting with shared memory) and (ii) de-

veloping an analysis framework for datasets based on their topological

representations.

This thesis is more concerned with the second axis (ii), especially, in

order to tackle the large scale nature of the TORI project, in an analysis of

an ensemble of topological descriptors. Moreover, in this line of direction

of data reduction using topological methods, we are also concerned about

how to find a good representation of an ensemble of datasets, i.e. a concise

representation that allows further analysis. Intuitively, it can be seen as a

compression of an ensemble in a format taking less storage while ensuring

that they are still usable afterward.

1.1.4 The Topology ToolKit (TTK)

When developing analysis tools, such as those within the TORI project,

it is a logical step to centralize them to ease their usage. The concept

of computer library (or just library for short) was introduced in a paper

of 1888 of Charles Babbage [Bab88], a pioneer in computer science. It

can be seen as a collection of pre-written and reusable codes that can

be utilized by others to simplify their process, like by programmers to

simplify their code or scientists to use a specific function of a machine. At

that time, programs were stored in physical punched cards (a cardboard

sheet with a series of non-holes and holes representing respectively 0 and

1). A collection of that kind of cards was said to constitutes a computer

library (like a collection of books is said to be a library).

The Topology ToolKit or TTK2 [TFL+
17] is a library for data analysis

and visualization using topological methods. It aims at developing effi-

cient and robust data analysis tools and to popularize these topological

methods among end users and developers by providing a unified frame-

1https://erc-tori.github.io/
2https://topology-tool-kit.github.io/

https://erc-tori.github.io/
https://topology-tool-kit.github.io/
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work. Happily for the developers, the underlying code is not stored in

punched cards but in text files corresponding to C++ programs. TTK

is open-source, the code is accessible to everyone, and is integrated to

ParaView [AGL05], a widely-used data analysis and visualization soft-

ware developed by Kitware, also open-source, based on the Visualization

ToolKit (VTK). This integration to ParaView also facilitates the use of TTK

for end users, allowing them to use algorithms without knowing how to

code and to use topological methods without knowing all their mathemat-

ical details. The different functionalities of TTK can also be used by other

programmers in their own C++ or Python code.

All the research done within the TORI project, including that presented

in this thesis, have their corresponding code implemented and integrated

into TTK and are thus publicly available. It also allows the other partici-

pants of the project to use the developed methods to go beyond.

1.2 Problem Formulation

The previous section provided some context about data analysis, topologi-

cal methods as well as the overall research project within which this Ph.D.

thesis was carried out. We now further specify the context of our work by

describing the scientific problems addressed by this thesis.

1.2.1 Enhancing the Discriminability of Topological Methods

Persistence diagrams (Figure 2.5) are one of the most used representations

in TDA if not the most. This trend of research can be explained, at least,

by their desirable mathematical properties such as their stability [CEH05]

and their simpler structure compared to other topological representations.

Several tools such as distances (to compare them), geodesics (to visualize

optimum transitions between them), and barycenters (to visualize one per-

sistence diagram representative of a set), have already been well studied for

persistence diagrams [TMMH14, LCO18, VBT20].

However, persistence diagrams only consist of a set of features (or

structures) within a dataset, represented independently, and do not con-

tain any information about how they are connected and organized together

in the data. It results in a lack of specificity for persistence diagrams which

can yield identical data representations for significantly distinct datasets

(Figure 3.2), preventing the identification of distinct feature trends within

an ensemble. This motivates the use of more discriminant descriptors.
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However, no tools such as those developed for persistence diagrams

are available for these more discriminant descriptors. The arising ques-

tion is then: how can we adapt the available framework for persistence

diagrams to other descriptors? In this thesis we will address this research

question, specifically by focusing on merge trees.

1.2.2 Variability Analysis of Topological Descriptors

While the existing analysis framework for persistence diagrams allows in-

sightful analysis, it does have certain limitations. One of them arises from

the notion of barycenter, which only provides information about what we

expect to find on average within an ensemble, without conveying any de-

tails regarding its variability. A natural direction would involve the exten-

sion of the analysis of average to the analysis of variability of an ensemble.

In that context, some machine learning methods allowing to analyze

the variability within an ensemble could be used. Several attempts have al-

ready been made to conciliate topological descriptors and machine learn-

ing methods. They usually consist in transforming these topological de-

scriptors into a different representation that is usually given to machine

learning methods (e.g. points in Euclidean space) through a process

called vectorization [ACE+
17, Bub15, RT16, AVRT16, LPW21]. However,

vectorizations have several limitations in practice. First, they are prone

to approximation errors (resulting from quantization and linearization).

Also, they can be difficult to revert (especially for barycenters), which

makes them impractical for visualization tasks, especially regarding inter-

pretability. Moreover, their stability is not always guaranteed.

The question that emerges is therefore: how can we enrich this analysis

framework to capture variability and without vectorization? In this thesis,

we will focus on methods operating directly on topological descriptors

taking also into account the previous problem related to discriminability.

1.3 Contributions

We are interested in this thesis in the analysis and the visualization of

an ensemble of datasets with the goal of providing tools to end-users to

ease their task. Given that objective of tackling ensemble of large datasets

within the TORI project (Section 1.1.3), we use methods from Topolog-

ical Data Analysis (Section 1.1.2) to first represent each member of the

ensemble as a topological descriptor and then perform the analysis on
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the resulting ensemble of descriptors. Specifically, we want to develop

analysis tools for an ensemble of topological descriptors such as the per-

sistence diagrams or the merge trees. The first axis of this thesis focuses

on the extension of the existing analysis tools already available for persis-

tence diagrams to the specific case of merge trees, being more informative

descriptors. Once these building blocks have been introduced, we can

go further by extending the available tools for persistence diagrams and

merge trees to variability analysis, constituting the second axis of this the-

sis. Finally, the third axis encompasses both by defining all these methods,

in the light of data reduction, acting as a compression seeking an informa-

tive and concise representation of an ensemble of topological descriptors.

All methods developed in this thesis are implemented and available in

the open-source library Topology ToolKit [TFL+
17], and we provide us-

age examples for each of them with visualization pipelines in ParaView

and also using programming languages. Overall, we present in this thesis

the following contributions to the development of discriminant analysis

methods for ensembles of topological descriptors:

Analysis Framework for Merge Trees

To tackle the lack of discriminability of persistence diagrams, we propose

to adapt the tools available for these objects to merge trees. For that, we in-

troduce novel methods to compute distances, geodesics and barycenters of

merge trees. In particular, we bridge the gap between the edit distance be-

tween merge trees [SMKN20] and the existing methods for geodesics and

barycenters computation of persistence diagrams [TMMH14]. The naive

combination of these two methods can result in objects not respecting the

essential properties of merge trees, we therefore introduce mechanisms

to ensure their preservation. First, we modify and simplify the original

edit distance between merge trees by constraining it, in order to prevent

these inconsistencies cases. Then, and more importantly, we propose a lo-

cal normalization strategy guaranteeing the preservation of the mentioned

properties. We design parallel algorithms for the computation of the in-

troduced methods and, additionally, we extend them in order to revisit

the k-means clustering algorithm using merge trees. This contribution is

presented in Chapter 3.
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Variance Analysis of Ensembles of Topological Descriptors

In order to develop more advanced tools for the analysis of ensembles of

topological descriptors we want to go beyond the simple notion of average

that is the barycenter and study the variability of such ensembles. Inspired

by previous work on the optimal transport of histograms [SC15, CSB+
18],

we adapt to merge trees and persistence diagrams the Principal Com-

ponent Analysis (PCA) framework, a popular dimensionality reduction

method designed to identify the principal trends of variability of an en-

semble of datasets. We provide tools for visually inspecting the features

within the ensemble being the most responsible for the variance, those

varying the most. These tools help to understand how the features are

related to each other and to identify those that are influenced by similar

patterns of variation in the ensemble. It also allows to relate features and

members of the ensemble by revealing how features are responsible for

the arrangement of the members with each other in the ensemble. This

contribution is detailed in Chapter 4.

Non-Linear Pattern Analysis of Ensembles of Topological Descriptors

PCA will find linear relationships among the features of the ensemble.

For instance, it can indicates that when a first structure is prominent in a

member of the ensemble, then a second structure is also expected to be

prominent, but only in a proportional manner. Therefore, it could miss

more complex patterns such as exponential or cyclical relationships or

when structures are related in a piecewise manner (when the presence

of a first structure implies the presence in a proportional manner of a

second one for some members, but in an inversely proportional manner

for other members). To tackle this problem a generalization of PCA can

be used, based on a neural network architecture called the Auto-Encoder.

It results in a method allowing to unfold non-linear variability patterns in

a linear manner, making them easily detectable and analyzable. Inspired

by how PCA can be generalized to Auto-Encoder we extend the previous

approach in order to adapt to merge trees and persistence diagrams the

Auto-Encoder framework. Specifically, we propose a novel neural network

layer capable of processing natively such topological descriptors without

prior vectorization. This contribution is described in Chapter 5.
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Applications to Ensemble Analysis

We show the utility of all our different contributions with visualization,

machine learning and data reduction tasks.

We use the assignment between structures given by our distance be-

tween merge trees (Section 3.3) for feature tracking in a time-varying en-

semble of datasets (Section 3.6.1).

By extending the proposed barycenter method for merge trees (Sec-

tion 3.5) to the k-means algorithm we can operate a clustering of an en-

semble of datasets based on their merge trees (Section 3.6.3), to summarize

and automatically form homogeneous groups in an ensemble, revealing

the main trends of features within.

Our adaptation to persistence diagrams and merge trees of PCA (Sec-

tion 4.2) and Auto-Encoder (Section 5.2) provide a dimensionality reduc-

tion framework (Section 4.4.2 and Section 5.4.2), allowing to visually rep-

resent in 2D all members of the ensemble based on their topological de-

scriptors, revealing clusters, trends and relationships among the members.

Finally, our contributions can be used for data reduction. Our geodesic

method for merge trees Section 3.4 can be used for temporal reduction, in

order to sub-sample a temporal sequence of merge trees, by automati-

cally identifying key frames of the sequence used to reconstruct the other

frames Section 3.6.2. And our adaptation of PCA (Section 4.2) and Auto-

Encoder (Section 5.2) allow to compress and reconstruct an ensemble of

persistence diagrams or merge trees being still usable for usual tasks such

as feature tracking or clustering (Section 4.4.1 and Section 5.4.1).

1.4 Outline

After this introduction, the manuscript is structured in the following way.

First, in Chapter 2 we introduce the theoretical background on Topo-

logical Data Analysis upon which our work is based.

Then, in Chapter 3, we present our methods for computing distances,

geodesics and barycenters of merge trees, as well as its extension to a

clustering algorithm using merge trees.

After this, in Chapter 4, we detail our adapation of the Principal Com-

ponent Analysis framework to persistence diagrams and merge trees, re-

sulting in a dimensionality reduction method for these objects.

Chapter 5 describes our novel network layer allowing to natively pro-
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cess persistence diagrams and merge trees and its use in the context of

Auto-Encoders.

Finally, Chapter 6 marks the endpoint of this thesis by offering a suc-

cinct overview of its different contributions and limitations along with a

discussion about open problems that deserve future exploration.
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This chapter introduces the various concepts upon which our work is

based. We start with the formalism underlying the data representa-

tion, from its support to how the data itself is encoded with the notions

of manifold and scalar field respectively. Then, we introduce notions of ho-

mology allowing to characterize data under the perspective of topology.

Finally, we introduce different topological data representations used in

our work, such as critical points, persistence diagrams and merge trees, along

with analysis tools available for them such as distances and barycenters.

This chapter contains definition adapted from [Tie18] and [EH09]. We

refer to the reference books [EH09] and [Zom10] for detailed introduction

to computational topology.
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2.1 Input Data Representation

Figure 2.1 – Examples of structured grid (a) and unstructured grid (b) being, in practice,

the support of data on which the information, the values, are encoded (visualized here

with the color map from the low values in green to the high values in blue).

In practice, we are interested in data in the form of measurements

defined on geometrical objets which we call grids. These are defined as

collections of points connected with edges, where each point is associ-

ated with a value. We can enumerate mainly two types of grids, regular

grids that can be seen as an image (a rectangular grid of pixels) and un-

structured grids exhibiting arbitrary structures. Examples are shown in

Figure 2.1. We will first describe the mathematical formalism allowing to

describe these grids by introducing the concept of manifold. We will then

detail how they can be represented in practice as grids through the general

notion of simplicial complex, allowing to represent even more complicated

building blocks than points and edges. Finally, we will present the mathe-

matical notions related to how the values are encoded in the grid with the

notion of scalar field.

2.1.1 Domain Representation

A manifold can be intuitively seen as a curved object with arbitrary shape

which looks flat when we zoom in small regions of it. It is locally equiv-

alent to a Euclidean space, a flat space where straightforward geometric

rules apply, but can have more complex structures globally that are curved

and deviates from flatness. A common example of manifolds is the sur-

face of a planet, which is spherical when we look from far but look like a

flat space when we are on them.

Formally it is an ensemble of points that are related to each other with

a structure called topology. This relation between the points is expressed

with the notion of open sets, that are usually chosen to describe the neigh-
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borhood of the points. They can be seen as various subsets of all the

points, indicating which points are considered as neighbors. The topology

specifies which subsets of the space are considered open. Its definition is

designed to build the essential properties needed for continuity and other

topological concepts without having to rely on specific distance metrics

(as in Euclidean spaces) to convey this notion of closeness between points.

Definition 2.1 (Topological Space, Topology, Open Sets) A set X is called a topological space if

there exists a collection T of subsets of X such that:

– The empty set ∅ and X itself belong to T.

– Any union of elements of T belongs to T.

– Any finite intersection of elements of T belongs to T.

T is said to be a topology of X and its elements are the open sets of X.

Definition 2.2 (Function) Given two topological spaces X1 and X2, a function f : X1 → X2

associates each element of X1 to a unique element of X2.

Definition 2.3 (Injection) A function f : X1 → X2 is an injection if for each pair x1, x2 ∈ X1

such that x1 ̸= x2 then f (x1) ̸= f (x2). f is said to be injective.

Definition 2.4 (Bijection) A function f : X1 → X2 is a bijection if for each element x2 ∈ X2

there is a unique element x1 ∈ X1 such that f (x1) = x2. f is said to be

bijective.

Definition 2.5 (Continuous Function) A function f : X1 → X2 is continuous if for each open

set t2 of X2, f−1(t2) is an open set of X1. With f−1 : X2 → X1 being the

inverse of f .

A continuous function will transform a topological space into another

such that points in a given neighborhood in the first space will be mapped

to points in a specific neighborhood in the second space. It can be seen as

if it is preserving the neighborhood of each point, points being neighbors

in the first space will also be neighbors after the mapping.

Definition 2.6 (Homeomorphism) A function f : X1 → X2 is a homeomorphism if it is a

continuous bijection and if its inverse f−1 is also continuous. X1 and X2

are said to be homeomorphic.

In topology, homeomorphisms is usually used to compare topological

spaces, in several contexts, two topological spaces are often considered

as equivalent if they are homeomorphic. More specifically, homeomorphic
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Figure 2.2 – Visualization of d-simplices for d ≤ 3, from left to right: a vertex, an edge,

a triangle and a tetrahedron.

spaces can be transformed into each other by mappings that do not involve

tearing or gluing parts of the spaces.

Definition 2.7 (Manifold) A topological space M is a d-manifold if every point p of M has

a neighborhood homeomorphic to an open subset of the Euclidean space

Rd.

Manifold can be seen as a smooth definition of a shape. In order to

represent it on numeric devices we need to discretize it with building

blocks such as pixels are discrete building blocks of an image.

The most fundamental building blocks are points. To describe how

they can be connected, this concept of points can be generalized to the

notion of simplices. These are defined as all the points inside a specific

ensemble of points. For instance, for a single point it is itself. For two

points it will be all the points between them (by drawing a line between

the two points). For three points it will corresponds to all the points in

the triangle formed by these points and so on. Examples of them are

illustrated in Figure 2.2.

Definition 2.8 (Convex Set) A set C of an Euclidean space Rn is convex if for any pair of

points x and y of C, the point tx + (1− t)y is also in C, with t ∈ [0, 1].

Definition 2.9 (Convex Hull) The convex hull of a set of points P of an Euclidean space Rn

is the unique minimal convex set containing all points of P.

Definition 2.10 (Simplex) A d-simplex is the convex hull of d+ 1 affinely independent points

of an Euclidean space Rn, with 0 ≤ d ≤ n. For instance:

– A 0-simplex is a vertex.

– A 1-simplex is a edge.

– A 2-simplex is a triangle.

– A 3-simplex is a tetrahedron.
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Definition 2.11 (Face) A face τ of a d-simplex σ is a m-simplex (with m < d) of a nonempty

subset of m + 1 points among the d + 1 points of σ, called a m-face of σ

and noted τ < σ.

The faces of a simplex correspond to all the lower-dimensional sim-

plices it contains. Considering this, we can think about a simplex as a

way of expresssing neighbor relations between lower-dimensional sim-

plices (similar to how it is encoded by open sets in a topological space).

These building blocks, the simplices, can then be combined together

to create a more complex structure called a simplicial complex. It is an

ensemble of simplices that are glued together on the faces they have in

common.

Definition 2.12 (Simplicial Complex) A simplicial complex K is a set of simplices such that:

– Every face of a simplex of K is also in K.

– The intersection of any two simplices of K is either empty or a com-

mon face of both of them.

Definition 2.13 (Triangulation) A triangulation T of a topological space X is a simplicial

complex K such that the union of its simplices is homeomorphic to X.

Definition 2.14 (Piecewise Linear Manifold) A piecewise linear (PL) manifold M is the trian-

gulation of a manifold M.

By definition, a PL manifold is therefore a simplicial complex that ac-

curately represent a manifold.

2.1.2 Scalar Field Representation

Given a simplicial complex, we can then define some notions to represent

the values that are stored on its simplices (like the grey intensity of each

pixel of a greyscale image). These values are the information that we

consider in input, while the simplicial complex is only a support for them

to lie on.

Given a function mapping each 0-simplex of the simplicial complex to

a value, we now define how to compute the value on any point inside any

d-simplex. As an example, given three points and three edges constituing

a triangle along with a function on the points, the following definition

allows to express the value of any points inside the triangle.

It uses the notion of barycentric coordinates, expresssing the coordi-

nates of a point as a linear combination (a weighted sum) of the coordi-
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nates of other points. Then, once we have the weights to express a point

as a combination of other ones, we can express its value as a linear com-

bination, using the same weights, of the values of the other points.

Definition 2.15 (Barycentric Coordinates) Let a point p in Rd and a d-simplex σ. The barycen-

tric coordinates of p relatively to σ are the coefficients α0, . . . , αd of a linear

combination of the 0-simplices v0, . . . , vd of σ such that p = ∑d
i=0 αivi with

∑d
i=0 αi = 1 and αi ∈ R.

Definition 2.16 (Piecewise Linear Scalar Field) Let a triangulation T and a function h that

maps its 0-simplices to R. A piecewise linear (PL) scalar field f on T
is a function that maps any point p of a d-simplex σ of T to a value

f (p) = ∑d
i=0 αih(vi) with α0, . . . , αd being the barycentric coordinates of p

relatively to σ and v0, . . . , vd the 0-simplices of σ.

2.2 Notions of Homology

Once the domains at hand have been introduced, a natural question that

arises is how can we compare them? Answering this question allows to

put in groups, to classify, topological spaces that we consider equivalent

according some properties, or on the contrary, to know the properties that

differ between some topological spaces. One way to compare topological

spaces is to verify if they are homeomorphic.

To avoid to search for homeomorphisms between two spaces one can

instead look at the properties of a space that are preserved through those

transformations, those properties are called topological invariants. If two

spaces have different invariants, it implies that they are not homeomor-

phic, highlighting their distinct topological nature (the opposite is how-

ever not true, spaces having same invariants are not necessarly homeomor-

phic). Those properties that are unaffected by homeomorphisms simplify

the study of spaces by reducing complex shapes to their essential topo-

logical attributes. This abstraction allows to focus on the core and global

properties of a space without being encumbered by geometric details.

In that context, tools from algebraic topology allow to study these

topological spaces from a global point of view and to capture their es-

sential and intrinsic properties. Specifically, homology is a framework

that defines these topological invariants as holes of the domain. Holes are

properties that can not be changed with homeomorphisms, making them

robust and reliable properties to study and compare spaces. The goal of
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simplicial homology is to mathematically define this notion of holes in a

simplicial complex. Additionally, persistent homology captures not only

the invariants of a space but their evolution across different scales accord-

ing to a scalar field representing the input data.

2.2.1 Simplicial Homology

The first building block needed to detect holes in a simplicial complex K
is the notion of a p-chain, corresponding intuitively to a collection of p-

simplices in K. This notion is defined formally as a sum of these simplices,

including a coefficient for each of them representing how many times they

appear in the chain.

Definition 2.17 (p-chain) A p-chain of a simplicial complex K is a sum of p-simplices of K,

defined as: ∑i miσi with mi ∈ Z and each σi is a simplex of K.

Here, we will restrict the coefficients mi to be 0 or 1 (as it is usually

done), in the space of natural numbers modulo 2 : Z/2Z.

Given a p-chain we will now define how to determine if it indicates the

presence a hole. In homology, holes can be classified by their dimension

and a hole of dimension p will be surrounded by a p-chain. Intuitively,

holes of dimension 0 corresponds to connected components, dimension 1

to loops, dimension 2 to voids (or cavities) and so on. In order to detect

holes in a simplicial complex, one first need to detect cycles within it, i.e.

a chain surrounding a hole (like the perimeter of a circle).

To know if a p-chain c is a cycle we need to search for extremities in

c, being formally defined with the notion of boundary. The boundary of

a p-chain will yield the (p−1)-faces of the simplices of the chain that are

not shared with another simplex of the chain.

The boundary of a p-chain will be intuitively, if there exists, a collection

of (p−1)-simplices i.e. a (p−1)-chain. If the boundary is empty the p-

chain corresponds to a cycle called a p-cycle.

Definition 2.18 (Boundary of a p-simplex) The boundary of a p-simplex σ is the sum of its

(p−1)-faces, defined as the boundary operator ∂p(σ) = ∑i τi
p−1 with τi

p−1

being the ith (p−1)-face of σ. The boundary of a 0-simplex is 0 (empty).

Definition 2.19 (Boundary of a p-chain) The boundary of a p-chain c is the sum of the bound-

ary of each of its simplices: ∂p(c) = ∑i mi∂p(σi).

The idea that (p−1)-faces shared by two p-simplices (like vertices by
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two edges) are not included in the boundary is formalized here through

the usage of coefficients modulo 2.

For instance, considering a 1-chain c of 3 edges AB, BC and CD (being

1-simplices linking the 0-simplices A, B, C and D according to their name).

The boundary operator gives us:

∂1(c) = ∂1(AB) + ∂1(BC) + ∂1(CD)

= A + B + B + C + C + D

= A + D

Definition 2.20 (p-cycle) A p-cycle of a simplicial complex K is a p-chain with empty

boundary.

Definition 2.21 (Group of p-cycles) The group of p-cycles of a simplicial complex K corre-

sponds to all p-cycles of K, noted Zp(K).

Equivalently, the group of p-cycles is noted ker(∂p), the kernel of the

boundary operator ∂p, representing all possible inputs of ∂p (the p-chains

of K) such that ∂p gives 0 (the empty boundary) when applied on them.

Detecting cycles is not sufficient for detecting holes. Indeed, a cycle

could be the border of something filled (like the perimeter of a disk). There-

fore, we need a way to differentiate between the cycles that are filled and

those that are not (corresponding to actual holes). The idea relies in the

fact that for a p-cycle to be filled there needs to exist a (p+1)-chain that

has this cycle, and only it, as boundary.

We can then define the set of all cycles that are not the boundary of

a higher dimensional chain, thus indicating the presence of a hole. More

formally, the pth homology group consists of all the p-cycles that are not

the boundary of a (p+1)-chain. Cycles indicating the presence of the

same hole are called homologous and are grouped together in the same

homology class.

Definition 2.22 (p-boundary) A p-boundary of a simplicial complex K is the boundary of a

(p+1)-chain.

Definition 2.23 (Group of p-boundaries) The group of p-boundaries of a simplicial complex K
corresponds to all p-boundaries of K, noted Bp(K).

Equivalently the group of p-boundaries is noted im(∂p+1), the images

of the boundary operator ∂p+1, representing all the possible outputs of

∂p+1 applied on the (p+1)-chains of K.
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Definition 2.24 (Homology Group) The pth homology group of a simplicial complex K is

the quotient group of its p-cycles modulo its p-boundaries: Hp(K) =

Zp(K)/Bp(K).

Equivalently Hp(K) = ker(∂p)/ im(∂p+1).

A quotient space V/N can be intuitively seen as the space V with

everything in N collapsed to 0. For instance, with Z/2Z we consider as

0 everything in 2Z (that is 2, 4, 6, . . .). Moreover, we consider equivalent

everything that has a difference of an element in 2Z such as 1 and 3,

having a difference of 2, since 2 ∈ 2Z and that everything in 2Z is collapsed

to 0 then 1 and 3 are considered equivalent.

The formal definition of the pth homology group tells us, like we have

already mentioned, that p-cycles being p-boundaries will be considered 0,

inexistent in the group. But most importantly, it allows to define formally

how two p-cycles are considered homologous. Given the intuition of a

quotient space and the formal definition of the pth homology group, two

cycles are therefore considered equivalent if their difference corresponds

to an element in Bp(K), a p-boundary. Intuitively (and since we work

with coefficients modulo 2), it tells us that if there exists a (p+1)-chain

whose boundary corresponds to the formal sum of two p-cycles then they

are considered homologous and are grouped in the same class. Another

intuitive way of considering two cycles homologous is if they can be con-

tinuously transformed into each other while preserving neighbourhood

during the transformation.

Each pth homology group Hp(K) can be seen as a collection of all

homology classes representing a p-dimensional hole of K. For instance,

H0(K) will contain classes representing connected components, H1(K)
the loops, H2(K) the voids (or cavities) and so on.

Finally, we can define the pth Betti number being the number of inde-

pendent classes of Hp(K). It corresponds to the number of independent

p-dimensional holes in K. By independent, we mean here that a p-cycle

could be the sum of two other p-cycles and, as a result, is not included in

the count of the pth Betti number.

Definition 2.25 (Betti Number) The pth Betti number of a simplicial complex K is the rank

of its pth homology group: βp(K) = rank
(
Hp(K)

)
, corresponding to its

number of independent classes.
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2.2.2 Persistent Homology

The tools of persistent homology are designed to track the evolution of

the homology groups during a filtration of a topological space. Intuitively,

a filtration of a topological space X is a process that begins by selecting a

subset of X and then, at each subsequent step, adds another subset of X to

the ones already included. One can then compute the homology groups

at each step to understand how they evolve along the filtration, to know

if some classes appear at a specific step or disappear at another one. For

instance, adding a subset of X being disconnected from the previously

added subsets will create another connected component, hence changing

the 0th homology group by adding a new class. On the contrary, adding a

subset of X resulting in the merge of two distinct connected components

will change the 0th homology group by merging a class into another.

Definition 2.26 (Filtration) A filtration is an ordered and indexed collection of topological

spaces {Xα}α∈R that are nested by inclusion such that Xi ⊆ Xj for i ≤ j.

A scalar field induces a filtration based on the notion of sub-level set.

This filtration consists in varying a threshold from the lowest values of the

function to the highest ones and to consider, at each step of the sequence,

all the points having a function value below the current threshold. For a

given scalar field, one can then look at which homology classes persist the

most during its filtration.

Definition 2.27 (Level Set) The level set f−1(w) of an isovalue w ∈ R relatively to a PL scalar

field f : M→ R on a PL manifoldM is the inverse of w by f defined as

f−1(w) = {p ∈ M | f (p) = w}, i.e. the ensemble of points p ∈ M such

that f (p) = w.

Definition 2.28 (Sub-Level and Super-Level Set) The sub-level set f−1
−∞(w) of an isovalue w ∈ R

relatively to a PL scalar field f : M → R on a PL manifold M is the

inverse of (−∞, w] by f defined as f−1
−∞(w) = {p ∈ M | f (p) ≤ w}. The

super-level set is defined similarly as f−1
+∞(w) = {p ∈ M | f (p) ≥ w}).

However, when working with simplicial complexes, we need to ensure

that each step of the sequence of the filtration is indeed a simplicial com-

plex and is nested by inclusion with the subsequent steps. To do so, the

faces of a simplex σ need to be added before σ itself and the simplices

should not be cut during the filtration as the sub-level set does. It can be

easily achieved with the so-called lower star filtration [EH09], a combina-
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Figure 2.3 – Given a PL scalar field, the lower star filtration varies a threshold from the

lowest scalar value to the highest. The color map indicates the low values in blue and the

high values in green. At each step of the filtration, the homology group of the simplices

with function value below this threshold is considered. The change in the topology of

the domain occurs after specific threshold values that corresponds to the creation of new

connected components (a, b, c, d) or the merge of existing components (e, f, g).

torial equivalent and adaptation of the sub-level set filtration to simplicial

complexes.

Definition 2.29 (Star) The star St(v) of a vertex v of a simplicial complex K is the set of

simplices having v as a face, defined as St(v) = {σ ∈ K | v < σ}.

Definition 2.30 (Lower Star) The lower star St−(v) of a vertex v of a simplicial complex K
relatively to a PL scalar field f : K → R is the subset of the simplices in

the star of v whose vertices have strictly lower value than v, defined as

St−(σ) = {σ ∈ St(v) | ∀u ∈ σ, f (u) < f (v)}.

The lower star filtration adds for each vertex its entire lower star to the

filtration. When the function f is injective on the vertices, it results in a

filtration in n steps, with n being the number of vertices, starting with the

vertex having the lowest value and ending with the one having the highest

(Figure 2.3). Making any scalar field injective can be easily achieved with-

out even modifying the scalar field using a symbolic perturbation [EM90],

in practice we use an injective offset field on the vertices corresponding to

their index in the simplicial complex allowing to disambiguate equalities.

The sequence of sub-complexes Ki given by the lower star filtration

(with 0 ≤ i < n, and n being the number of vertices of K) results in a

sequence of mappings between their homology groups:

Hp(K0)→ Hp(K1)→ . . .→ Hp(Kn−1) = Hp(K) (2.1)

These mappings describe how p-dimensional holes evolve throughout
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the filtration. Using these mappings, we can define the notion of pth per-

sistent homology groups. These correspond, for each step of the filtration,

to the classes of the homology group of a previous step remaining at the

current step, those that persists through the filtration.

Definition 2.31 (Persistent Homology Groups) Let a filtration and the mappings induced

by inclusion, f i,j
p : Hp(Ki) → Hp(Kj) for 0 ≤ i ≤ j ≤ n, between the

corresponding sequence of homology groups. The pth persistent homology

groups are the images of these homomorphisms noted Hi,j
p = im f i,j

p .

Each pth homology group Hi,j
p is a subset of Hp(Kj) corresponding to

what have become the classes of Hp(Ki) at the jth step of the filtration.

They allow to differentiate between the classes that appear at a specific

step and the remaining classes of the previous step. Specifically, we can

say that a class γ is born at Ki (the ith step of the filtration) if γ ∈ Hp(Ki)

(it is a class of the current step) and γ /∈ Hi−1,i
p (that does not come from

the previous step). Moreover, a class γ that is born at Ki dies at Kj if

f i,j−1
p (γ) /∈ Hi−1,j−1

p (at the (j−1)th step, the class γ is still not merged to

any classes existing before the ith step) and f ij
p (γ) ∈ H

i−1,j
p (at the jth step,

γ merges to a class existing before the ith step).

When two classes merge at some point of the filtration (for instance,

an edge is added resulting in the merge of two connected components)

we say that the most recently born class dies in favor of the oldest. This is

commonly refered as the Elder rule [EH09]. This allows to associate to each

class two values, its birth and its death, the scalar values for which this class

appears in the filtration and, respectively, merges with another one. We

can then define the persistence of a class corresponding to the difference

between its death and its birth. Intuitively, classes with small persistence

could be seen as noise in the data, classes that appear and die very quickly

during the filtration (like very small pit of values for instance). On the con-

trary, classes with high persistence are often considered as the important

structures of the scalar field.

2.3 Critical Points

During the lower star filtration, the number of independent classes in each

pth homology group (the pth Betti number) changes at specific values and

at specific vertices of the domain called the critical points [Ban67]. These

points indicate where the function stops changing in the same direction,

when it transitions from increasing to decreasing or vice-versa.
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Figure 2.4 – Regular and critical points on a 2D PL manifold. A vertex v (black sphere)

can be classified according the connectivity of its lower link Lk−(v) (light green spheres

and edges) and its upper link Lk+(v) (light blue spheres and edges). Level sets above and

below the value w = f (v) are shown respectively in light pink and pink. A change in the

topology of the level sets occurs as they pass w if v is a critical point.

For instance, a vertex having the lowest value among its neighbors will

be considered as a critical point (being a local minima), during the filtra-

tion it will be the first among its neighbors to appear hence corresponding

to the creation of a connected component. To define the neighborhood of

a vertex v we can look at the faces of the simplices containing v and keep

only those that do not contain v. This is defined as the link of a vertex.

Definition 2.32 (Link) The link Lk(v) of a vertex v of a simplicial complex K is the set of

faces of the simplices having v as a face (i.e. of St(v)) not containing v,

defined as Lk(v) = {τ ∈ K | τ < σ, σ ∈ St(v), τ ∩ v = ∅}.

To determine if a vertex v is a critical point, we need to examine how

two specific subsets of the link of v, called the lower and the upper link,

are organized. They include the simplices of the link having vertices with

lower (respectively higher) values than v.

Definition 2.33 (Lower and Upper Links) The lower link Lk−(v) (respectively the upper link

Lk+(v)) of a vertex v given a PL scalar field f is the subset of the sim-

plices of the link Lk(v) such that each of their vertices has a strictly lower

(respectively higher) function value than v. It is defined for the lower

link as Lk−(v) = {σ ∈ Lk(v) | ∀v′ ∈ σ, f (v′) < f (v)} (respectively

Lk+(v) = {σ ∈ Lk(v) | ∀v′ ∈ σ, f (v′) > f (v)}).

We say that a vertex is a regular point if both its lower and upper

links consist of a single connected component without any holes. We can

think of this as if a regular point is a transition between two chunks of

respectively lower and higher valued vertices, hence, there is no change

in the direction of the function at that point. Slightly more formally, each

of these links should be simply connected, meaning that all paths between
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two points in a link can be continuously transformed into each other. The

other vertices are called critical points (Figure 2.4).

Definition 2.34 (Critical Point) Let a PL scalar field f : M→ R defined on a PL manifold

M. A vertex v of M is a regular point if and only if both Lk−(v) and

Lk+(v) are simply connected. Otherwise, v is a critical point of f and f (v)

is called a critical isovalue.

Definition 2.35 (Extremum) Let a PL scalar field f :M→ R defined on a PL manifoldM.

A critical point v is a minimum (respectively maximum) of f if and only if

Lk−(v) (respectively Lk+(v)) is empty.

Definition 2.36 (Saddle) Let a PL scalar field f : M → R defined on a PL manifold M.

A critical point v is a saddle if and only if it is neither a minimum nor a

maximum of f .

Critical points can be classified by their index I , on a d-manifold, min-

ima will have index 0, maxima index d and saddle points from 1 to d− 1.

There will be no saddle points on a d-manifold when d ≤ 1 and d − 1

different types of saddle points when d > 1. Saddle points correspond to

vertices where the level set merges or split connected components locally.

In 3D, connected components of f−1
−∞(w) are created at local minima

and destroyed at 1-saddles. One-dimensional cycles (loops) are created at

1-saddles and destroyed at 2-saddles and voids are created at 2-saddles

and destroyed at maxima.

2.4 Persistence Diagrams

During the lower star filtration, each (independent) homology class can

be associated to a pair of critical points (themselves associated to scalar

values), corresponding to the birth and the death of this class. All these

classes can be encoded in a mathematical object called the persistence

diagram, corresponding to a visual summary of the topological features

(i.e. connected components, independent cycles, voids) of f−1
−∞(w).

Specifically, in the domain, each topological feature of f−1
−∞(w) (corre-

sponding to a homology class) is associated with a unique pair of critical

points (c, c′), its birth and its death. The Elder rule [EH09] states that criti-

cal points can be arranged in pairs according to this observation, such that

each critical point appears in only one pair (c, c′), with f (c) < f (c′) and

I(c) = I(c′)− 1. For instance, if two connected components of f−1
−∞(w)
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Figure 2.5 – Given a PL scalar field f defined on a 2D PL manifold (top left), the

minimum-saddle persistence diagram (right) tracks the evolution of the connected com-

ponents of the sub-level sets of f (bottom). The color map of the PL scalar field (top left)

indicates here the low values in blue and the high values in light green (i.e. the consid-

ered function f is the opposite of the elevation). Critical points of f are represented with

spheres, in blue for minima, black for saddles and white for maxima. During the filtration,

connected components appear at specific values corresponding to the minima m0, m1 and

m2. When the filtration reaches s0 the connected component born at m1 dies in favor of

the older one born at m0 creating the pair (m1, s0) in the diagram. Then, when reaching

s1, the component born at m2 dies creating the pair (m2, s1). By convention the global

minimum m0 and the global maximum M0 are paired together.

meet at a critical point c′, the younger component (created last, in c) dies,

in favor of the older one (created first). The persistence diagram D( f ) em-

beds each pair to a single point in 2D at coordinates
(

f (c), f (c′)
)

and we

define the persistence of a pair by its height f (c′)− f (c).

It provides a visual overview of the features of a dataset (Figure 2.5),

where salient features stand out from the diagonal while pairs correspond-

ing to noise are located near the diagonal (Figure 2.7).

The diagonal in this 2D birth/death space plays an important role,

it consists of all the features with zero persistence i.e. the non-existent

structures of the data. A persistence diagram contains all the persistence

pairs given a filtration and an infinite number of points in the diagonal.

Definition 2.37 (Persistence Diagram) The pth persistence diagram of a filtration is a set of

points in R2 (with possible multiplicity) encoding the birth and death of

each homology class of the pth persistent homology group, along with all

the points in the diagonal {(x, y) ∈ R2 | x = y} with infinite multiplicity.

During the filtration, a class γ that never dies is considered to have an
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infinite persistence. The first class appearing in the filtration, at the global

minimum, is one of them since it never merges with an older class. In

practice, we crop the death value of these pairs to the maximum of the

function. It results, at least, in a pair involving the global minimum and

the global maximum of the function. It allows to clearly define a persis-

tence pair corresponding to the most prominent structure of the domain

and to use it in algorithms without having to deal with the infinite value.

The 0th persistence diagram tracks the evolution of the connected com-

ponents of the lower star filtration. It consists of the minimum-saddle

persistence pairs, components being born at a minimum and dying at a

saddle, along with the global min-max pair. These pairs are of particular

interest since they represent structures of the data related to pit of values.

On a d-manifold, the (d − 1)th persistence diagram also encodes useful

structures. Specifically, the duality argument [EH09, ELZ02] states that,

under certain conditions, the (d− 1)th persistence diagram coincide with

the 0th persistence diagram of the opposite filtration. Intuitively, it means

that it tracks the evolution of the connected components of the upper star

filtration (in opposition of the lower star filtration) corresponding to peak

of values encoded by the saddle-maximum persistence pairs.

In some applications the structures with small persistence can be im-

portant, in order to inspect how the noise is organized. However, in the

applications within this thesis we are more interested with structures hav-

ing high persistence, corresponding to large peak or pit of values. In light

of this, we often simplify the persistence diagrams to remove the pairs

with small persistence (being not useful in our applications). This has

the effect to facilitate the use of these objects by decreasing their size and

hence the computation time of analysis tools using them (e.g. distances).

2.4.1 Metric between Persistence Diagrams

In the following, we introduce an established metric between persistence

diagrams, the Wasserstein distance. After introducing this metric, we de-

tail further derived concepts, such as the notions of geodesics and Wasser-

stein barycenters.

In practice, persistence diagrams are represented only by its persis-

tence pairs, without the points in the diagonal with infinite multiplicity.

To measure the distance between two diagrams D( fi) and D( f j), a typical

pre-processing step consists in augmenting each diagram [KMN17], with
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Figure 2.6 – Distance and geodesic computation between two persistence diagramsD( fi)

and D( f j), given the metric WD2 . The matching induced by the optimal partial assign-

ment ϕ is shown with dashed lines (c). The pairs matched to the diagonal are shown in

transparent (a). For two diagrams, the Wasserstein barycenter (b) is given, thanks to the

d2 distance in the birth/death space, by the arithmetic mean of the matched points. Then,

the linear interpolation of the matchings (c) describes a geodesic [TMMH14].

the diagonal projection of the off-diagonal points of the other diagram

(Figure 2.6a):

D′( fi) = D( fi) ∪ {∆(pj) | pj ∈ D( f j)}

D′( f j) = D( f j) ∪ {∆(pi) | pi ∈ D( fi)},

where ∆(pi) = ( xi+yi
2 , xi+yi

2 ) stands for the diagonal projection of the off-

diagonal point pi = (xi, yi) ∈ D( fi). Intuitively, this augmentation phase

inserts dummy features in the diagram (with zero persistence, along the

diagonal), hence preserving the topological information of the diagrams.

This augmentation guarantees that the two diagrams now have the same

number of points (|D′( fi)| = |D′( f j)|), which facilitates the evaluation of

their distance, as described next.

Given two points pi = (xi, yi) ∈ D′( fi) and pj = (xj, yj) ∈ D′( f j), the

ground distance dq (q > 0) in the 2D birth/death space is given by:

dq(pi, pj) = (|xj − xi|q + |yj − yi|q)1/q = ∥pi − pj∥q. (2.2)

By convention, dq(pi, pj) is set to zero between diagonal points (xi = yi

and xj = yj). Then, the Lq-Wasserstein distance WDq is:

WDq
(
D′( fi),D′( f j)

)
= min

ϕ∈Φ

(
∑

pi∈D′( fi)

dq
(

pi, ϕ(pi)
)q
)1/q

, (2.3)

where Φ is the set of all bijective assignments ϕ mapping a point pi ∈
D′( fi) to a point pj ∈ D′( f j) (possibly its diagonal projection, indicat-

ing the destruction of the corresponding feature, transparent pairs in Fig-

ure 2.6a).
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Intuitively, the Wasserstein metric optimizes a matching between the

two diagrams, and evaluates their distance given the resulting mismatch.

The augmentation (Figure 2.6a) preserves the distance, while making the

assignment problem balanced, and thus easily solvable with traditional

algorithms [Mun57, Ber81].

2.4.2 Geodesic and Barycenter of Persistence Diagrams

Given a set SD = {D( f1), . . . ,D( fN)} of persistence diagrams, let F(D, α)

be the Fréchet energy of the set, under the metric WD2 , with the coefficients

α = {α1, α2, . . . , αN}, such that αi ∈ [0, 1] and ∑i αi = 1:

F(D, α) = ∑
D( fi)∈SD

αiWD2
(
D,D( fi)

)2. (2.4)

Then a diagram D∗ ∈ D (where D is the space of persistence dia-

grams) which minimizes F(D, α) is called a Wasserstein barycenter of the

set SD (or its Fréchet mean under the metric WD2 ).

D∗ can be efficiently estimated with an optimization strategy

[TMMH14, VBT20] which resembles a Lloyd relaxation [Llo82], and

which alternates an assignment and an update procedure. First, D is

initialized at an arbitrary diagram of SD. Then, the assignment step

computes an optimal assignment ϕi : D → D( fi) between D and each

diagram of SD. Next, the update step updates the candidate D to a

position in D which minimizes the sum of its squared distances to the

diagrams of SD under the current set of assignments {ϕ1, . . . , ϕN}. This

is achieved by replacing each point pi ∈ D by the arithmetic mean (in

the birth/death space) of all its assignments ϕi(pi). The overall sequence

assignment/update is iterated until convergence of the Fréchet energy.

In practice, the coefficients αi are all set to the same value (αi = 1/N,

∀i ∈ {1, . . . , N}). When N = 2 and α1 = α2 = 0.5 (Figure 2.6b), D∗ be-

comes a midpoint between D( fi) and D( f j) and the set of possible values

for α1 and α2 (Figure 2.6c) describes a geodesic in D (i.e. length minimiz-

ing path) with regard to the L2-Wasserstein metric [TMMH14].

2.5 Merge Trees

We now introduce the main topological data representation studied in

this thesis: the merge tree. We also describe a specific representation of the
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Figure 2.7 – Illustration of the topological descriptors considered in this work, on a

clean (a) and a noisy (b) variant of a 2D toy dataset. For all descriptors, the color code

indicates the persistence of the corresponding saddle-maximum pair. Critical points are

represented with spheres (larger ones for maxima). Persistence diagrams, merge trees

and branch decomposition trees (BDTs) are respectively represented in the left, center and

right insets. For both datasets, the four main features (the larger hills) are represented

with salient pairs in the diagram and the merge tree. To avoid clutter in the visualization,

the branches with low persistence (less than 10% of the function range) are rendered with

small white arcs while larger, and colored arcs represent persistent branches (more than

10% of the function range).

merge tree called the branch decomposition tree, which can be interpreted as

a generalization of the extremum persistence diagram.

The join tree, noted T −( fi), is a visual summary of the connected com-

ponents of fi
−1
−∞(w) [CSA00]. The split tree (Figure 2.7), noted T +( fi),

is defined symmetrically and describes the connected components of the

super-level set fi
−1
+∞(w). Each of these two directed trees is called a merge

tree, noted generically T ( fi) in the following. Intuitively, these trees track

the creation of connected components of the sub (or super) level sets at

their leaves, and merge events at their interior nodes.

Definition 2.38 (Merge Tree) Let a PL scalar field f : M → R defined on a PL manifold

M. The join tree T −( f ) (respectively the split tree T +( f )) is defined as the

quotient spaceM/∼ by the equivalence relation ∼ stating that two points

p1 and p2 inM are equivalent if f (p1) = f (p2) and if p1 and p2 belong to

the same connected component of f−1
−∞( f (p1)) (respectively f−1

+∞( f (p1))).

To mitigate a phenomenon called saddle swap, these trees are often post-

processed [SMKN20], by merging adjacent saddles in the tree if their rel-

ative difference in scalar value is smaller than a threshold ϵ1 ∈ [0, 1].

Merge trees are often visualized according to a persistence-driven
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branch decomposition [PCMS04], to make the persistence pairs captured by

the tree stand out. In this context, a persistent branch is a monotone path on

the tree connecting the nodes corresponding to the creation and destruc-

tion (according to the Elder rule, Section 2.2.2) of a connected component

of sub (or super) level set. Then, the branch decomposition provides a pla-

nar layout of the merge tree, where each persistent branch is represented

as a vertical segment (center insets in Figure 2.7). Persistent branches can

be visually distinguished using a manual persistence threshold of the pla-

nar layout algorithm. It allows to show the important branches (having

persistence above this threshold) with colored spheres and segments (cen-

ter insets in Figure 2.7) and the non-important branches (having persis-

tence below the threshold) with small white spheres and segments (center

insets in Figure 2.7). Important branches are displayed at the right of their

parent branch in the tree hierarchy and non-important branches at the left

and close to their parent. In each case, branches are visually connected to

their parent branch with a horizontal segment.

The branch decomposition tree (BDT), noted B( fi), is a directed tree

whose nodes are the persistent branches captured by the branch decompo-

sition and whose arcs denote adjacency relations between them in the MT.

In Figure 2.7, the BDTs (right insets) can be interpreted as the dual of the

branch decompositions (center insets, with matching colors): each vertical

segment in the branch decomposition (center) corresponds to a node in the

BDT (right) and each horizontal segment (center, denoting an adjacency

relation between branches) corresponds to an arc in the BDT. The BDT can

be interpreted as a generalization of the extremum persistence diagram:

like D( fi), B( fi) describes the population of (extremum) persistence pairs

present in the data. However, unlike the persistence diagram, it addition-

ally captures adjacency relations between them (Figure 2.7). Note that,

the birth and death of each persistent branch bi ∈ B( fi), noted (xi, yi),

span by construction an interval included in that of its parent b′i ∈ B( fi):

[xi, yi] ⊆ [x′i , y′i]. This nesting property of BDTs is a direct consequence of

the Elder rule (Section 2.2.2).

2.5.1 Construction

[CSA00] provides the reference algorithm to compute the merge tree in

all dimensions. They used a Union-Find structure to track the connected

components of the sub-level sets (for the join tree, or super-level sets for

the split tree). For the join tree, vertices of the input data are processed
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by increasing scalar value order. When a vertex is processed, if it is not

connected to vertices of lower scalar values it is therefore considered as

a minimum critical point and a node is created in the join tree and is

considered as a Union-Find class. If the processed vertex is connected

to vertices of lower scalar values but in the same Union-Find class it is

therefore a regular point. If the vertices are in different Union-Find classes

then it is a saddle critical point and a node is created in the join tree

with edges linking this new node and the nodes corresponding to the

collected Union-Find classes. These Union-Find classes are then merged

into a single one. The process continue until having processed all the

vertices. [GFJT17] presents an efficient algorithm for the construction of

the merge tree in parallel.

2.5.2 Metric between Merge Trees

Several metrics have been introduced for measuring distances between

merge trees. We focus in the remainder on the edit distance introduced

by Sridharamurthy et al. [SMKN20], as its balance between computability

and acceptable stability in practice seems particularly promising.

The edit distance between two merge trees T ( fi) and T ( f j), noted

DE
(
T ( fi), T ( f j)

)
, is defined as follows. Let Ni be a subset of the nodes

of T ( fi) and Ni its complement. Let ϕ′′′ be a partial assignment between

Ni and a subset Nj of the nodes of T ( f j) (with complement Nj). Then

DE
(
T ( fi), T ( f j)

)
is given by:

DE
(
T ( fi), T ( f j)

)
= min

(ϕ′′′,Ni ,Nj)∈Φ′′′

(
∑

ni∈Ni

γ
(
ni → ϕ′′′(ni)

)
(2.5)

+ ∑
ni∈Ni

γ(ni → ∅) (2.6)

+ ∑
nj∈Nj

γ(∅→ nj)
)

(2.7)

where Φ′′′ is the space of constrained partial assignments (i.e. ϕ′′′ maps

disjoint subtrees of T ( fi) to disjoint subtrees of T ( f j)) and where γ refers

to the cost for: (i) mapping a node ni ∈ T ( fi) to a node ϕ′′(ni) = nj ∈
T ( f j) (line 2.5), (ii) deleting a node ni ∈ T ( fi) (line 2.6) and (iii) creating a

node nj ∈ T ( f j) (line 2.7), ∅ being the empty tree.

Zhang [Zha96] introduced a polynomial time algorithm for comput-

ing a constrained sequence of edit operations with minimal edit distance

(Equation 2.5), and showed that the resulting distance is indeed a metric

if each cost γ for the above three edit operations is itself a metric (non-

negativity, identity, symmetry, triangle inequality). Sridharamurthy et al.
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[SMKN20] exploited this property to introduce their metric, by defining

the following distance-based cost model, where pi and pj stand for the

persistence pairs containing the nodes ni ∈ T ( fi) and nj ∈ T ( f j):

γ(ni → nj) = min
(
d∞(pi, pj), γ(ni → ∅) + γ(∅→ nj)

)
γ(ni → ∅) = d∞

(
pi, ∆(pi)

)
γ(∅→ nj) = d∞

(
∆(pj), pj

)
.

2.6 Other Topological Abstractions

Other topological abstractions could be used to extract more information

and to be more discrimant than the persistence diagrams and the merge

trees. Even if these representations are not used in our work, we would

like to show the other main tools available in topological data analysis.

We briefly introduce the notions of contour trees, Reeb graphs and Morse-

Smale complexes and illustrate an example for each of them in Figure 2.8.

Figure 2.8 – Examples of other topological abstractions. The Reeb graph (a) tracks the

evolution of the connected components of the level set of the function during the sweep

of the isovalues from −∞ to ∞. When the graph contains no cycles it is referred to as

the contour tree (b). The Morse-Smale complex (c) extracts areas of the domain where the

integration of the gradient of the function leads to the same critical point.
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Reeb Graphs and Contour Trees

Reeb graphs (Figure 2.8a) track the evolution of the connected components

of the level set. As the isovalue of the level set increases, each contour (the

different connected components of the level set) is reduced to a point in

the Reeb graph. The Reeb graph intuitively extracts the skeleton of com-

plicated shape given a function. When the domain is simply connected

the Reeb graph of a function is acyclic and corresponds to the contour tree

(Figure 2.8b), in that case, the join tree and the split tree of a function can

be merged together to create its contour tree [CSA00].

More-Smale Complexes

The Morse-Smale complex is another topological abstraction capturing a

different aspect of the function compared to the other abstractions. It seg-

ments the domain given the gradient of the function, by grouping points

together if following the gradient from these points lead to the same crit-

ical point. It results in two kinds of objects: the ascending manifolds

(Figure 2.8c, middle) and the descending manifolds (Figure 2.8c, right),

respectively by using the gradient and, respectively, its opposite.
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This chapter presents a unified computational framework for the esti-

mation of distances, geodesics and barycenters of merge trees. We

extend recent work on the edit distance [SMKN20] and introduce a new

metric, called the Wasserstein distance between merge trees, which is

purposely designed to enable efficient computations of geodesics and

barycenters. Specifically, our new distance is strictly equivalent to the

L2-Wasserstein distance between extremum persistence diagrams, but it is

restricted to a smaller solution space, namely, the space of rooted par-

tial isomorphisms between branch decomposition trees. This enables

a simple extension of existing optimization frameworks [TMMH14] for

geodesics and barycenters from persistence diagrams to merge trees. We

introduce a task-based algorithm which can be generically applied to dis-

tance, geodesic, barycenter or cluster computation. The task-based nature

of our approach enables further accelerations with shared-memory par-

allelism. Extensive experiments on public ensembles and SciVis contest

benchmarks demonstrate the efficiency of our approach – with barycenter

computations in the orders of minutes for the largest examples – as well

as its qualitative ability to generate representative barycenter merge trees,

visually summarizing the features of interest found in the ensemble. We

show the utility of our contributions with dedicated visualization applica-

tions: feature tracking, temporal reduction and ensemble clustering. We

provide a lightweight C++ implementation that can be used to reproduce

our results.

The work presented in this chapter has been published in the jour-

nal IEEE Transactions on Visualization and Computer Graphics as

part of the proceedings of the IEEE VIS 2021 conference [PVDT22].

It was certified replicable by the Graphics Replicability Stamp Ini-

tiative (http://www.replicabilitystamp.org/). Our implementation

is available at https://github.com/MatPont/WassersteinMergeTrees

and the data used in this work at https://github.com/MatPont/

WassersteinMergeTreesData. It is also integrated in the Topology ToolKit

[TFL+
17].

http://www.replicabilitystamp.org/#https-github-com-matpont-wassersteinmergetrees
https://github.com/MatPont/WassersteinMergeTrees
https://github.com/MatPont/WassersteinMergeTreesData
https://github.com/MatPont/WassersteinMergeTreesData
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Our Contributions in one Image

Figure 3.1 – The merge trees of three members (a-c) of the Isabel ensemble (wind velocity) concisely and visually encode the

number and salience of the features of interest found in the data (eyewall and region of high speed wind, blue and cyan). They

also describe how these features are globally connected in the data. In these trees, branches with a low persistence (less than

20% of the function range) are shown with small white arcs. The pointwise mean for the three members (d) exhibits 5 salient

maxima (due to distinct eyewall locations, blue, cyan and black) and its merge tree is not representative of the input trees

(containing at most 3 large features). In contrast, the Wasserstein barycenter (e) is representative of the input trees, with

a number and persistence of large branches that better match the input trees (a-c). Our framework for distances, geodesics

and barycenters enables a variety of merge tree based applications, including (f) feature tracking, (g) temporal reduction

– key frames are automatically identified (white insets) and deleted merge trees (blue insets) are accurately reconstructed

with geodesics – and (h) ensemble clustering and summarization – the clusters and centroids automatically computed by our

approach provide a visual summary of the main trends of features found in the ensemble.
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3.1 Context

Figure 3.2 – The persistence diagram, D( fi), and the merge tree, T ( fi), both visually

summarize the number, data range and salience of the features of interest present in the

data. However, the persistence diagram represents each individual feature independently,

while the merge tree additionally describes how they connect together. This results in a

lack of specificity for the persistence diagram which can yield identical data representa-

tions for significantly distinct datasets (from left to right, the gaussians with white and

cyan spheres have been swapped). In contrast, the merge tree captures this nuance and

produces two distinct data representations.

When dealing with an ensemble of datasets, a topological data abstrac-

tion such as the persistence diagram can be computed for each ensemble

member (possibly in-situ [BAA+
16, ABG+

15]). Then, a major challenge

for end users is the interpretation of the resulting ensemble of persis-

tence diagrams. To address this, several analysis tools were developed

for persistence diagrams ([TMMH14, LCO18, VBT20]) such as: distances

(to compare persistence diagrams), geodesics (to visualize optimum tran-

sitions between them), and barycenters (to visualize one persistence dia-

gram representative of a set). However, persistence diagrams suffer from

a lack of specificity (Figure 3.2), which can prevent the identification of

distinct feature trends within the ensemble.

This chapter addresses this problem by introducing a unified compu-

tational framework for the automatic computation of distances, geodesics,

barycenters and clusters of merge trees. In particular, we extend recent

work on the edit distance [SMKN20] and introduce a new metric, called

the Wasserstein distance between merge trees, which is purposely designed

to enable efficient computations of geodesics (i.e. length minimizing mor-

phings) and barycenters. In that regard, our work can be interpreted as

an extension of previous work on the edit distance [SMKN20], to adapt

it to the optimization strategy previously developed for the computation

of barycenters of persistence diagrams [TMMH14]. We present efficient,

task-based algorithms using shared-memory parallelism, resulting in the

computation of distances, geodesics and barycenters in practical times for

real-life datasets. We illustrate the utility of each of our contributions

in dedicated visualization tasks. First, we show that our distance com-
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putation algorithm can be used for a merge-tree based tracking of fea-

tures through time. Second, we show that our framework for computing

geodesics between merge trees can be used for the reliable sub-sampling

of temporal sequences of merge trees. Third, we illustrate the utility of our

barycenters for clustering ensemble members based on their merge trees,

while providing cluster centroids which visually summarize the main fea-

tures of interest present in each cluster.

3.1.1 Related Work

The literature related to this chapter can be classified into three main

groups, reviewed in the following: (i) uncertainty visualization, (ii) en-

semble visualization, and (iii) topological methods for ensembles.

Uncertainty Visualization

Variability in data can be modeled and encoded in several ways. In par-

ticular, uncertain datasets capture variability by modeling each point of

the domain as a random variable, whose variability is explicitly mod-

eled by an estimator of an a priori probability density function (PDF).

The analysis of uncertain data is a notoriously challenging problem in

visualization, described in several surveys [PRJ12, BHJ+14, unc08, JS03,

MAH+
05, PWL97]. Early techniques focused on estimating the en-

tropy of the random variables [PGA13], their correlations [PW12] or

their gradient variations [PMW13]. The positional uncertainty of level

sets has been studied for several interpolation schemes and PDF mod-

els [AE13, ASE16, PRW11, PWH11, PH11, PH13, PPH13, SKS12, AJ19].

Similarly, the positional uncertainty of critical points has been studied

for Gaussian [LS16, OGHT10, OGT11, PPH12] or uniform distributions

[GST14, BJB+
12, Szy13]. A general limitation of existing methods for un-

certain data is their dependence on the specific PDF model for which they

have been designed. This reduces their usability for ensemble data, where

the PDF estimated from the ensemble members can follow an arbitrary,

unknown model. Also, most existing techniques for uncertain data do

not consider multi-modal PDF models, which is however necessary when

several, distinct trends are present in the ensemble data.

Ensemble Visualization

Another way to model and encode variability in data consists in consid-

ering ensemble datasets. In this setting, the variability is directly encoded
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by an ensemble of empirical observations (i.e. the members of the ensem-

ble). Current approaches to ensemble visualization typically compute

some geometrical objects describing the features of interest (level sets,

streamlines, etc), for each member of the ensemble. Then, an aggrega-

tion phase estimates a representative object for the resulting ensemble of

geometrical objects. For instance, spaghetti plots [DHLZ02] are a typi-

cal example for studying level-set variability, especially for weather data

[PWB+
09, SZD+

10]. More specifically, box-plots [WMK13] describe the

variability of contours and curves [MWK14]. For flow ensembles, Hum-

mel et al. [HOGJ13] introduce a Lagrangian framework for classification

purposes. Clustering techniques have been investigated, to identify the

main trends, and their variability, in ensembles of streamlines [FBW16]

and isocontours [FKRW16]. However, only few approaches have applied

this overall aggregation strategy to topological objects. Favelier et al.

[FFST18] and Athawale et al. [AMJ+19] introduced approaches for analyz-

ing the variability of critical points and gradient separatrices respectively.

Several techniques attempted to generate an aggregated contour tree from

an ensemble based on overlap-driven heuristics [WZ13, Kra10]. Recently,

Lohfink et al. [LWL+
20] introduced an approach for the consistent layout

of multiple contour trees, to support effective visual comparisons between

the contour trees of the distinct members of an ensemble. Although the

above techniques addressed the visualization of ensembles of topological

objects, they did not focus explicitly on the computation of a representative

of multiple topological objects, such as barycenters.

Topological Methods

Concepts and algorithms from computational topology [EH09] have

been investigated, adapted and extended by the visualization commu-

nity for more than twenty years [HLH+
16, YMS+21]. Popular topo-

logical representations include the persistence diagram [ELZ02, EH09]

(Section 2.4), which represents the population of features of interest in

function of their salience, and which can be computed via matrix re-

duction [EH09, BKR14]. The Reeb graph [BGSF08], which describes the

connectivity evolution of level sets, has also been widely studied and

several efficient algorithms have been documented [PSBM07, TGSP09,

Par12, DN13], including parallel algorithms [GFJT19b]. Efficient algo-

rithms have also been documented for its variants, the merge and contour

trees [TV98, CSA00] (Section 2.5), and parallel algorithms have also been
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described [MDN12, AN15, CWSA16, GFJT19a]. The Morse-Smale com-

plex [EHZ01, EHNP03, BEHP03], which depicts the global behaviour of

integral lines, is another popular topological data abstraction in visualiza-

tion [DFFIM15]. Robust and efficient algorithms have been introduced for

its computation [RWS11, SN12, GBP19] based on Discrete Morse Theory

[For98].

Distance metrics, which are necessary ingredients for the computa-

tion of barycenters, have been studied for most of the above objects. In-

spired by the literature in optimal transport [Kan42, Mon81], the Wasser-

stein distance between persistence diagrams [EH09] (Section 2.4.1) and

its variant the Bottleneck distance [ELZ02] have been extensively stud-

ied. They are based on a bipartite assignment problem, for which exact

[Mun57] and approximate [Ber81, KMN17] implementations are publicly

available [TFL+
17]. Several similarity measures have been introduced for

Reeb graphs [HSKK01] and their variants [SSW14]. However, since these

measures are not distance metrics (the preservation of the triangle inequal-

ity is not specifically enforced), they do not seem conducive to barycenter

computation. Stable distance metrics between Reeb graphs [BGW14] and

merge trees [MBW14] have been studied from a theoretical point of view

but their computation, following an exponential time complexity, is not

tractable for practical datasets in general, except if reliable correspondence

labels between the nodes of the trees are provided on the input [GMO+
19],

which is not practical either for large ensembles. Distances with polyno-

mial time computation algorithms have also been investigated. Similarly

to our overall strategy, Beketayev et al. [BYM+
14] focus on a dual repre-

sentation, the branch decomposition tree (BDT, Section 2.5), but in contrast to

our approach, they estimate their distances by iteratively reducing a target

mismatch term, in particular, over a search space significantly larger than

ours. Sridharamurthy et al. [SMKN20] specialize efficient algorithms for

computing constrained edit distances between trees [Zha96] to the spe-

cial case of merge trees (see Section 2.5.2), resulting in a distance which

is computable for real-life datasets and with acceptable practical stability.

However, it is not conducive to simple barycenter computations.

Indeed, the linear interpolation of the optimal node assignments in-

duced by this metric (Figure 3.3) does not result in a shortest path, and

hence generates inaccurate midpoints (i.e. inaccurate barycenters given

two trees). This further implies that there is no clear or simple strategy for

the general computation of barycenters according to that metric.

A key technical reason for this is that DE involves assignments be-
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Figure 3.3 – In this example with two datasets fi and f j (a), the optimal matchings

(gray) with regard to the edit distance DE [SMKN20] (b) map a maximum to a saddle

(red spheres). The resulting linear interpolation Tα( fi → f j) (b) does not describe a

shortest path between the input trees (c, top): DE
(
T ( fi), Tα( fi → f j)

)
+ DE

(
Tα( fi →

f j), T ( f j)
)
> DE

(
T ( fi), T ( f j)

)
. In contrast, our new metric WT2 enables linear in-

terpolations (d) which exactly coincide with shortest paths (c, bottom). The numbers

included in (c) are the actual values for DE (top) and WT2 (bottom) for this example.

tween nodes (of the input merge trees) and not persistence pairs. This has

several consequences. First, given two input trees T ( fi) and T ( f j), DE’s

matchings may assign a saddle node in T ( fi) to an extremum node in

T ( f j), resulting in inconsistent interpolations in the data (from a valley to

a peak). Second, DE’s matchings can possibly assign two nodes in T ( fi)

belonging to a single persistence pair of fi to nodes in T ( f j) belonging to

distinct persistence pairs in f j. This second phenomenon further challenges

interpolation-based geodesics.

Regarding the estimation of a representative object from a set of topo-

logical representations, several approaches emerged recently. A recent line

of work [GMO+
19, YWM+

19b] introduced a framework for computing a

1-center of a set of merge trees (i.e. minimizing its maximum distance to

the set), according to an interleaving distance. However, as documented

by its authors, this approach requires pre-existing, reliable correspondence

labels between the nodes of all the input trees, which is not practical with

real-life datasets (heuristics need to be considered). Also, since they min-

imize their maximum distance to a set, 1-centers are typically sensitive to

outliers, which prevents their usage for estimating trends or supporting

clustering tasks (which typically focus on densities rather than maximum

distances). This is further evaluated in Section 3.7.2. In contrast, our ap-

proach focuses on the estimation of barycenters (instead of 1-centers) and

computes a tree which minimizes its average distance to an ensemble of

merge trees (instead of its maximum distance), which is less sensitive to

outliers, which better captures trends and which supports clustering tasks.

Moreover, the node correspondences between the barycenter and the input

trees are automatically estimated by our approach via an assignment opti-
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mization present at the core of our distance estimation. Thus our method

does not require input correspondences, which makes it readily applicable

to real-life ensembles. Several methods [TMMH14, LCO18, VBT20] have

been introduced for the automatic estimation of barycenters (Section 2.4.2)

of persistence diagrams (or vectorized variants [ACE+
17, Bub15]). How-

ever, the persistence diagram can lack specificity in its data characteriza-

tion (Figure 3.2). This limitation is addressed by our work which focuses

instead on merge trees.

3.1.2 Contributions

This chapter makes the following new contributions:

1. A practical distance metric between merge trees: We extend recent work

on the edit distance [SMKN20] and introduce a new distance be-

tween merge trees, which, in contrast to previous work, is purposely

designed to enable efficient computations of geodesics and barycen-

ters. It can be computed efficiently, it has acceptable practical stabil-

ity and it has a strong connection to established metrics, which eases

its interpretation. Specifically, it can be interpreted as a variant of

the L2-Wasserstein distance for persistence diagrams, for which we

constrain the underlying search space to account for the additional

structural information provided by the merge tree.

2. A simple approach for computing geodesics between merge trees: Given our

new metric, we present a simple approach for computing geodesics

between merge trees. It uses a simple linear interpolation of the as-

signments resulting from our new metric, enabling the exact compu-

tation of geodesics in linear time. This follows from previous work

on persistence diagram geodesics [TMMH14] and it is made possi-

ble thanks to a new, local normalization procedure, guaranteeing the

topological consistency of the interpolated trees.

3. An approach for computing barycenters between merge trees: Our method

for geodesics between merge trees enables a straightforward adap-

tation of previous optimization strategies for persistence diagram

barycenters [TMMH14], resulting, to our knowledge, in the first ap-

proach for the computation of barycenters of merge trees.

4. Unified computational framework: We present a unified computational

framework for the estimation of distances, geodesics, barycenters,

and clusters of merge trees. In particular, we introduce an efficient,
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task-based algorithm adapted from previous work on edit distances

[Zha96, SMKN20], which is generically applicable to any of the

above tasks. Our algorithm supports shared-memory parallelism,

allowing for further accelerations in practice.

5. Applications: We illustrate the utility of each of our contributions

with dedicated visualization tasks, including feature tracking, tem-

poral reduction and ensemble clustering and summarization.

6. Implementation: We provide a lightweight C++ implementation of

our algorithms that can be used for reproduction purposes.

3.2 Preliminaries

The necessary theoretical background for this chapter has already been

introduced in Chapter 2. However, we would like here to redefine the

Wasserstein distance between persistence diagrams to ease the transition

to the distance between merge trees proposed in this chapter.

Let Pi be a subset of the off-diagonal points of D( fi) and Pi its comple-

ment (i.e. the other off-diagonal points of D( fi) not in Pi). Let (ϕ, Pi, Pj) be

a partial assignment between D( fi) and D( f j), i.e. a bijective map between

Pi and a subset of off-diagonal points Pj of D( f j), with complement Pj.

Then, the Lq-Wasserstein distance, noted WDq , can be redefined as:

WDq
(
D( fi),D( f j)

)
= min

(ϕ,Pi ,Pj)∈Φ

(
∑

pi∈Pi

dq
(

pi, ϕ(pi)
)q (3.1)

+ ∑
pi∈Pi

dq
(

pi, ∆(pi)
)q (3.2)

+ ∑
pj∈Pj

dq
(
∆(pj), pj

)q
)1/q

(3.3)

where Φ is the set of all possible partial assignments mapping each point

pi ∈ D( fi) to a point ϕ(pi) = pj ∈ D( f j) (line 3.1), or to its diagonal pro-

jection, ∆(pi) = ( xi+yi
2 , xi+yi

2 ), denoting the removal of the corresponding

feature from D( fi) or D( f j) (lines 3.2 and 3.3).

3.3 Wasserstein Distances Between Merge Trees

This section introduces our new distance metric between merge trees,

which is specifically designed for the subsequent computation of

geodesics (Section 3.4) and barycenters (Section 3.5). For this, we bridge
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the gap between the edit distance between merge trees [SMKN20] and

existing work addressing the computation of geodesics and barycen-

ters for persistence diagrams according to the L2-Wasserstein distance

[TMMH14].

3.3.1 Overview

The end goal of our work is the computation of barycenters of merge

trees. For this, we extend the edit distance DE [SMKN20] (formalized in

Section 2.5.2), to make it fit the optimization strategy used for barycen-

ters of persistence diagrams [TMMH14]. Our key idea consists in trans-

forming DE such that it becomes strictly equivalent to the L2-Wasserstein

distance of persistence diagrams, but given a restricted space of possible

assignments, constrained by the structure of the input trees T ( fi) and

T ( f j), hence its name Wasserstein distance between merge trees. Then,

thanks to this compatibility with the L2-Wasserstein distance, the assign-

ments resulting from our metric can be directly used for interpolation-

based geodesic and barycenter computations (Section 3.4 and Section 3.5).

Overall, our strategy involves four major modifications to the edit distance

DE [SMKN20], detailed in the remainder of this section:

1. To consider assignments between persistence pairs instead of merge

tree nodes, we consider an edit distance between the BDTs B( fi) and

B( f j) (Section 2.5) instead of the input merges trees T ( fi) and T ( f j)

(as done with DE). This is described in Section 3.3.2.

2. We constrain the assignment search space to the space of rooted par-

tial isomorphisms. Specifically, similarly to DE, we enforce the as-

signment of disjoint subtrees of B( fi) to disjoint subtrees of B( f j).

Moreover, in contrast to DE, we additionally extend this constraint

by enforcing the destruction of entire subtrees upon the destruction

of their root. These two constraints together enforce assignments de-

scribing isomorphisms between rooted subtrees of B( fi) and B( f j).

Such isomorphisms pave the way for interpolation-based geodesics.

This is described in Section 3.3.2, Section 3.3.3 and Section 3.4.1.

3. We introduce a cost model based on the Euclidean distance d2 to

enable geodesic computation by linear interpolation of the assign-

ments in the 2D birth/death space. This is described in Secs. 3.3.2

and 3.4.1.
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4. We finally extend our metric with a local normalization term, which

enforces nested birth-death values, along the interpolation of the as-

signments, for nested branches. This is described in Section 3.4.2.

3.3.2 Definition and Properties

Given two input merge trees, T ( fi) and T ( f j), we first consider their BDTs

B( fi) and B( f j) (Section 2.5). Let Bi be a subset of the nodes of B( fi) and

Bi its complement. Note that each node in Bi corresponds to a persistence

pair of D( fi). Let (ϕ′, Bi, Bj) be a partial assignment between Bi and a

subset Bj of the nodes of B( f j) (with complement Bj). Then we introduce

the L2-Wasserstein distance WT2 between the BDTs B( fi) and B( f j) of the

merge trees T ( fi) and T ( f j) as:

WT2
(
B( fi),B( f j)

)
= min

(ϕ′,Bi ,Bj)∈Φ′

(
∑

bi∈Bi

γ
(
bi → ϕ′(bi)

)2 (3.4)

+ ∑
bi∈Bi

γ(bi → ∅)2 (3.5)

+ ∑
bj∈Bj

γ(∅→ bj)
2
)1/2

(3.6)

where Φ′ is the space of constrained partial assignments mapping disjoints

subtrees of B( fi) to disjoint subtrees of B( f j), and mapping entire subtrees

to the empty tree ∅ if their root is itself mapped to ∅. Then, given the

kth direct child of bi, noted bk
i , it follows that bk

i either maps through ϕ′

to a direct child of ϕ′(bi) ∈ B( f j) (then bi, bk
i ∈ Bi) or to the empty tree ∅

(then the subtree rooted in bk
i , noted B( fi, bk

i ), belongs to Bi). This further

implies that the rooted subtrees Bi ⊆ B( fi) and Bj = ϕ′(Bi) ⊆ B( f j) are

isomorphic and we call (ϕ′, Bi, Bj) a rooted partial isomorphism. Unlike DE

(see Section 2.5.2) but similarly to WD2 (Equation 3.1), the cost of each

operation (mapping, line 3.4, destruction, line 3.5, and creation, line 3.6) is

squared, and the square root of the sum of the squared costs is considered

as the overall distance.

Next, we define the edit costs as follows (we recall that each branch

bi ∈ B( fi) exactly coincides with a persistence pair pi ∈ D( fi)):

γ
(
bi → ϕ′(bi)

)
= d2

(
bi, ϕ′(bi)

)
γ(bi → ∅) = d2

(
bi, ∆(bi)

)
(3.7)

γ(∅→ bj) = d2
(
∆(bj), bj

)
.

Note that the expression of the L2-Wasserstein distance WT2 between

merge trees (Equation 3.4) is therefore identical to the expression of the
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Figure 3.4 – The composition ψ′ ◦ ϕ′ of two rooted isomorphisms ϕ′ (blue) and ψ′ (green)

is itself a rooted isomorphism (red). In this schematic view, the involved subtrees are

represented as squares.

Wasserstein distance between persistence diagrams (Equation 3.1) for q =

2, at the notable exception of the search space of the partial assignments

Φ′ ⊂ Φ, which is constrained to rooted partial isomorphisms. WT2 is

indeed a distance metric.

WT2
(
B( fi),B( f j)

)
is always non-negative (the costs γ are squared).

WT2
(
B( fi),B( f j)

)
is symmetric (destruction and creation costs are sym-

metric, lines 3.5 and 3.6).

WT2
(
B( fi),B( f j)

)
= 0 if and only if all costs γ = 0, which only happens

if B( fi) = B( f j) (the identity is included in Φ′).

We now argue that WT2 preserves the triangle inequality, given three

trees B( fi), B( f j) and B( fk). For this, we follow a classical approach

which we detail here for the sake of completeness. First, we argue that

a composition of (optimal) partial rooted isomorphisms (from B( fi) to

B( f j), then from B( f j) to B( fk)) is itself a valid partial rooted isomor-

phism (and hence belong to our solution space Φ′) and that its associ-

ated cost consequently bounds by above WT2
(
B( fi),B( fk)

)
(Equation 3.8).

Second, we argue that this associated cost is itself bounded by above by

WT2
(
B( fi),B( f j)

)
+ WT2

(
B( f j),B( fk)

)
.

Let (ϕ′, Bi, Bj) be the optimal solution of the partial assignment prob-

lem between B( fi) and B( f j). ϕ′ is a rooted isomorphism (i.e. an isomor-

phism between rooted subtrees) between a subtree Bi of B( fi) and a sub-

tree Bj of B( f j) (blue, Figure 3.4). Equivalently, ϕ′ can also be interpreted

as a bijection between the arcs of Bi and those of Bj.

Let (ψ′, Bj
′, Bk) be the optimal solution of the partial assignment prob-

lem between B( f j) and B( fk). ψ′ is a rooted isomorphism between a sub-

tree Bj
′ of B( f j) and a subtree Bk of B( fk) (green, Figure 3.4).

Let Bj
′′ be the set of nodes of B( f j) involved in both ϕ′ and ψ′ (Bj

′′ =
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Bj ∩ Bj
′, in red in Figure 3.4, center). Let Bi

′′ be their pre-image by ϕ′

(Bi
′′ = ϕ′−1(Bj

′′), in red in Figure 3.4, left) and Bk
′′ their image by ψ′

(Bk
′′ = ψ′(Bj

′′), in red in Figure 3.4, right).

Since both ϕ′ and ψ′ are rooted isomorphisms, their composition ψ′ ◦ϕ′

is also a (rooted) isomorphism between the subtrees Bi
′′ of B( fi) and Bk

′′

of B( fk) (equivalently, it is a bijection between the arcs of Bi
′′ and the arcs

of Bk
′′). Then (ψ′ ◦ ϕ′, Bi

′′, Bj
′′) is itself a rooted partial isomorphism and

belongs to Φ′.

Then, it follows that:

WT2
(
B( fi),B( fk)

)
≤

(
∑

b∈Bi
′′

γ
(
b→ ψ′ ◦ ϕ′(b)

)2 (3.8)

+ ∑
b∈Bi

′′

γ(b→ ∅)2

+ ∑
b∈Bk

′′

γ(∅→ b)2
)1/2

.

Now, let U, V, W be scalar functions on the nodes of the set

Bik = Bi ∪ Bi ∪ (Bk \ B′′k ) ∪ Bk (cyan subset, Figure 3.4) such that:

U(b) =



γ
(
b→ ψ′ ◦ ϕ′(b)

)
for b ∈ B′′i = ϕ′−1(B′′j )

γ(b→ ∅) for b ∈ Bi \ B′′i

γ(b→ ∅) for b ∈ Bi

γ(∅→ b) for b ∈ Bk

γ(∅→ b) for b ∈ Bk \ B′′k = ψ′(Bj ∩ B′j).

(3.9)

U describes all the possible individual costs involved in the composi-

tion ψ′ ◦ ϕ′. In particular, we can re-write Equation 3.8 as:

WT2
(
B( fi),B( fk)

)
≤ ∥U∥2 =

(
∑

b∈Bik

U(b)2)1/2. (3.10)

V(b) =



γ
(
b→ ϕ′(b)

)
for b ∈ B′′i = ϕ′−1(B′′j )

γ
(
b→ ϕ′(b)

)
for b ∈ Bi \ Bi

′′

γ(b→ ∅) for b ∈ Bi

0 for b ∈ Bk

γ
(
ψ′−1(b)→ ∅

)
for b ∈ Bk \ B′′k = ψ′(Bj ∩ B′j)

(3.11)

V describes a subset of the individual costs involved in the optimal

rooted partial isomorphism ϕ′. In particular, only the costs involving

Bj ∩ B′j (orange square, Figure 3.4, middle) are excluded. Thus, we have:
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WT2
(
B( fi),B( f j)

)
≥ ∥V∥2 =

(
∑

b∈Bik

V(b)2)1/2. (3.12)

W(b) =



γ
(
ϕ′(b)→ ψ′ ◦ ϕ′(b)

)
for b ∈ B′′i = ϕ′−1(Bj

′′)

γ
(
ϕ′(b)→ ∅

)
for b ∈ Bi \ B′′i

0 for b ∈ Bi

γ(b→ ∅) for b ∈ Bk

γ
(
ψ′−1(b)→ b

)
for b ∈ Bk \ B′′k = ψ′(Bj ∩ B′j)

(3.13)

Similarly to V, W describes a subset of the individual costs involved in

the optimal rooted partial isomorphism ψ′. In particular, only the costs

involving B′′k (red square, Figure 3.4, right) are excluded. Thus:

WT2
(
B( f j),B( fk)

)
≥ ∥W∥2 =

(
∑

b∈Bik

W(b)2)1/2. (3.14)

Now, since γ is defined by the Euclidean distance (Equation 3.7), we

have for each node b ∈ Bik:

0 ≤ U(b) ≤ V(b) + W(b).

This can be verified by comparing the ith line of Equation 3.9 to the sum

of the ith lines of Equation 3.11 and Equation 3.13. Then, we have:

∥U∥2 ≤ ∥V + W∥2. (3.15)

Now, since the L2 norm between vectors respects itself the triangle

inequality, we have the following inequality:

∥V + W∥2 ≤ ∥V∥2 + ∥W∥2. (3.16)

Then, by combining equations 3.10, 3.15, 3.16, 3.12, and 3.14, it follows

that:

WT2
(
B( fi),B( fk)

)
≤ ∥U∥2 ≤ ∥V + W∥2 ≤ ∥V∥2 + ∥W∥2

≤WT2
(
B( fi),B( f j)

)
+ WT2

(
B( f j),B( fk)

)
which concludes the proof.

Moreover, since Φ′ ⊂ Φ, it follows that WT2
(
B( fi),B( f j)

)
≥

WD2
(
D( fi),D( f j)

)
, which was one of the main motivations of our work
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(i.e. to exploit the merge tree to define a more discriminative metric, Fig-

ure 3.2). Similarly to Sridharamurthy et al. [SMKN20], we mitigate saddle

swap instabilities in a preprocessing step, by merging adjacent saddles in

the input trees if their difference in scalar value is smaller than a thresh-

old ϵ1 ∈ [0, 1] (relative to the largest difference between adjacent saddles).

Then, when ϵ1 = 1, it follows that WT2
(
B( fi),B( f j)

)
= WD2

(
D( fi),D( f j)

)
.

This simple merging strategy significantly improves the practical stability

of WT2 , as empirically studied in Section 3.7.2 (Figure 3.13).

3.3.3 Computation

This section describes our algorithm for the recursive exploration of the

search space Φ′ (Equation 3.4). It is based on the same recursive traver-

sal as Zhang’s algorithm [Zha96], which we simplify as our search space

is significantly more constrained. Specifically our distance evaluation be-

tween subtrees (Equation 3.18) involves fewer solutions and it is restricted

to subtrees rooted at identical depth only.

Given the subtree B( fi, b) of B( fi) (rooted in b) and bk the kth direct

child of b in B( fi, b), the distance between the subtree B( fi, b) and the

empty tree ∅ is then obtained recursively by:

WT2
(
B( fi, b), ∅

)
=
(

γ(b→ ∅)2 + ∑
k

WT2
(
B( fi, bk), ∅

)2
)1/2

. (3.17)

The first step of our algorithm consists in evaluating WT2
(
B( fi, b), ∅

)
with

Equation 3.17 for all branches b ∈ B( fi) (and similarly for B( f j)).

Next, let F ( fi, b) be the forest of b in B( fi): F ( fi, b) is the set

of all the subtrees rooted at the k direct children of b: F ( fi, b) =

{B( fi, b1),B( fi, b2), . . . ,B( fi, bk)}. Then the distance between two subtrees

Figure 3.5 – The exploration of the space Φ′ (a candidate is highlighted in red, right)

relies on the evaluation of the sparse matrix T of subtree distances (left). Our task-based

algorithm optimizes the parallel computation of independent terms. Spheres of equal

radius in T denote independent terms and arrows between the lines of T indicate task

dependence (equivalently illustrated with arrows in the input BDTs, right).
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B( fi, bi) and B( f j, bj) is set to +∞ when bi and bj have distinct depths (gray

crosshatching lines in Figure 3.5, left). Otherwise (spheres in Figure 3.5,

left), it is obtained recursively by:

WT2
(
B( fi, bi),B( f j, bj)

)
=

(
γ(bi → bj)

2 (3.18)

+ WT2
(
F ( fi, bi),F ( f j, bj)

)2
)1/2

.

Let Fi be a subset of the forest F ( fi, bi) and Fi its complement. The

distance between two forests is then given recursively by:

WT2
(
F ( fi, bi),F ( f j, bj)

)
= min

(ϕ′′,Fi ,Fj)∈Φ′′

(
∑

fi∈Fi

WT2
(

fi, ϕ′′( fi)
)2

+ ∑
fi∈Fi

WT2
(

fi, ∅
)2

+ ∑
f j∈Fj

WT2
(

f j, ∅
)2
)1/2

where (ϕ′′, Fi, Fj) becomes the solution of a local, partial assignment prob-

lem between forests, mapping Fi to a subset Fj ∈ F ( f j, bj) (with comple-

ment Fj) or to the empty tree ∅, and which can be solved with traditional

assignment algorithms [Mun57, Ber81] (see Section 2.4.1). Then, the over-

all distance WT2 between the two input merge trees is obtained by estimat-

ing Equation 3.18 at the roots of B( fi) and B( f j), and solving recursively

the local assignment problems between forests (the recursion returns are

illustrated with arrows in Figure 3.5). Note that if ϵ1 = 1 (Section 3.3.2),

all the branches of B( fi) and B( f j) get attached to the roots and the re-

cursive local assignment problems between forests (above) become only

one, large, assignment problem between all branches. Thus, when ϵ1 = 1,

this algorithm indeed becomes strictly equivalent to the resolution of the

assignment problem involved in WD2 (Section 2.4.1).

In addition to considering squared costs in our edit distance (Equa-

tion 3.4) , our algorithm for the exploration of the search space indeed

simplifies the approach by Zhang [Zha96] (used by Sridharamurthy et al.

[SMKN20]), as our search space is significantly more constrained.

First, since our solution space only considers partial isomorphisms

between rooted subtrees, this implies that the destruction of a node (a

branch) bj ∈ B( f j) necessarily implies the destruction of its subtrees, i.e.

of its forest F ( f j, bj). Thus, the admissible solutions in [Zha96, SMKN20]

consisting in deleting bj and mapping a subtree B( fi, bi) to one of the sub-

trees of bj in the forest F ( f j, bj) are no longer admissible given our overall

solution space Φ′. The removal of such solutions drastically simplifies
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the evaluation of the distance between subtrees (being the minimum of

three solutions in [SMKN20], Eq. 12) to Equation 3.18 (containing only

one expression to evaluate).

Second, our solution space (rooted partial isomorphisms) also implies

that the nodes of B( fi) can only be assigned to nodes with the same depth

in B( f j). This further implies that the distance between subtrees (Equa-

tion 3.18) only needs to be evaluated for subtrees rooted at nodes of iden-

tical depth (Figure 3.5).

Together, these two simplifications ((i) simpler subtree distance and (ii)

distance evaluation restricted to subtrees of identical depth from the root)

are the key adaptations of Zhang’s algorithm [Zha96] that are required for

the exploration of our (more constrained) solution space.

3.3.4 Parallelism

Similarly to Zhang [Zha96], Equation 3.17 and Equation 3.18 can be es-

timated recursively. To avoid redundant computations, the distances be-

tween the forests F ( fi, bi) and F ( f j, bj) are stored at the entry (bi, bj) of a

matrix F (of size |B( fi)| × |B( f j)|), while the distances between the sub-

trees B( fi, bi) and B( f j, bj) (used within the assignment problems between

higher forests) are stored in a matrix T (of the same size, see Figure 3.5).

In our work, we additionally express this computation in terms of tasks,

to leverage task-based shared memory parallelism. In particular, we initi-

ate a task for each independent term of Eqs. 3.17 and 3.18, which is ready

for computation (see Figure 3.5).

First, Equation 3.17 is evaluated. For this, we initiate a task at each

leaf of B( fi). If a task is the last one to compute among all the direct chil-

dren of a node b ∈ B( fi), it is then authorized to continue and estimate

Equation 3.17 in b. Atomic counters in b are implemented (and atomically

incremented by the task of each child) to determine which child task is the

last one to complete, which enables an efficient lightweight synchroniza-

tion (Figure 3.5). Overall, Equation 3.17 is completely estimated with this

strategy in a bottom-up fashion. Second, Equation 3.18 is evaluated simi-

larly, by initiating a task at each leaf bi of B( fi). In particular, this task will

evaluate Equation 3.18 given bi against all subtrees of B( f j) of identical

depth (again using independent tasks initiated at the leaves of B( f j), see

Figure 3.5). Similarly to Equation 3.17, we employ the same lightweight

synchronization mechanism based on atomic counters to continue a task

over to its parent only when it is the last child task reaching it.
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Then, the number of parallel tasks is initially bounded by the num-

ber of leaves in the input BDTs (which is typically much larger than the

number of cores) and progressively decreases during the computation.

3.4 Wasserstein Geodesics Between Merge Trees

This section introduces our approach for the efficient computation of

geodesics between merge trees, according to the metric WT2 (Section 3.3).

For this, we leverage the rooted partial isomorphism resulting from the

distance computation, as well as linear interpolations of the matchings, as

introduced for persistence diagrams [TMMH14].

3.4.1 Definition and Properties

Given two input merge trees T ( fi) and T ( f j), our approach to geodesic

computation (Figure 3.6) simply consists in linearly interpolating the

rooted partial isomorphism (ϕ′, Bi, Bj) resulting from the optimization in-

volved in the computation of WT2
(
B( fi),B( f j)

)
(Equation 3.4). In partic-

ular, given the two BDTs B( fi) and B( f j), the interpolated BDT, noted

Bα( fi → f j) with α ∈ [0, 1] such that B0( fi → f j) = B( fi) and B1( fi →
f j) = B( f j), is obtained by considering the union of:

1. the linear interpolation Bα ⊆ Bα( fi → f j), between the nodes Bi ⊆
B( fi) and these of Bj ⊆ B( f j), given the isomorphism ϕ′ (the trees

Bi, Bj and Bα are then isomorphic, Figure 3.6):

b(α) = (1− α)b + αϕ′(b) ∀b ∈ Bi (3.19)

2. the linear interpolation of the destruction of the subtrees Bi, noted

Figure 3.6 – Our geodesic computation extends interpolation-based geodesics from per-

sistence diagrams (a) to merge trees (b). The interpolated BDT Bα( fi → f j) is obtained

by linear interpolation (with local normalization) of the partial isomorphism ϕ′ in the

birth/death space. In the data, the feature matching (dashed lines) induced by ϕ′ with

WT2 (b) better preserves the global structure of the data than ϕ with WD2 (a, red cross-

ing).
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Bi
α ⊆ Bα( fi → f j) (Bi and Bi

α are also isomorphic):

b(α) = (1− α)b + α∆(b) ∀b ∈ Bi (3.20)

3. the linear interpolation of the creation of the subtrees Bj, noted Bj
α ⊆

Bα( fi → f j) (Bj and Bj
α are also isomorphic):

b(α) = (1− α)∆(b) + αb ∀b ∈ Bj. (3.21)

Similarly to the distance WD2 between persistence diagrams, since

the edit costs involved in the distance WT2 are Euclidean distances in

the birth/death space (Equation 3.7), the interpolated branches b(α) of

Bα( fi → f j) can be efficiently computed with the simple linear interpo-

lations described above. The resulting interpolated tree Bα( fi → f j) is

indeed on a geodesic given WT2 .

In order to show this, for any two BDTs B( fi) and B( f j), we de-

scribe the existence of a path between them whose length is equal to

WT2
(
B( fi),B( f j)

)
(and thus minimal).

Let P =
(
Bt
)

t∈[0,1] be a path of BDTs parameterized by t.

We recall that the length L(P) of P is given by:

L(P) = sup
n;0=t0≤t1≤···≤tn=1

n−1

∑
k=0

WT2
(
Btk ,Btk+1

)
.

Now, let Pα be the path corresponding to the interpolation between

B( fi) and B( f j), as defined in Equation 3.19, Equation 3.21 and Equa-

tion 3.20. We now argue that L(Pα) = WT2
(
B( fi),B( f j)

)
.

Let (ϕ′, Bi, Bj) be the optimal rooted partial isomorphism between

B( fi) and B( f j). Moreover, let Bs( fi → f j) and Bt( fi → f j) be two interpo-

lated trees obtained respectively with α = s and α = t, given 0 ≤ s ≤ t ≤ 1.

We will note ϕ′s the application on Bi ∪ Bi ∪ Bj defined by interpolation

(Equation 3.19, Equation 3.21 and Equation 3.20):

ϕ′s(b) =


(1− s)b + sϕ′(b) for b ∈ Bi

(1− s)b + s∆(b) for b ∈ Bi

sb + (1− s)∆(b) for b ∈ Bj.

(3.22)

ϕ′t is defined similarly for t. Then, as discussed in Section 3.3, since the

composition of partial rooted isomorphisms is itself a partial rooted iso-

morphism, the composition ϕ′t ◦ ϕ′s
−1 (which goes from Bs( fi → f j) to

B( fi) and then from B( fi) to Bt( fi → f j)) does define a valid partial rooted

isomorphism between Bs( fi → f j) and Bt( fi → f j) and we have:
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WT2
(
Bs( fi → f j),Bt( fi → f j)

)
≤

(
∑

b∈Bi∪Bi∪Bj

γ
(
ϕ′s(b)→ ϕ′t(b)

)2
)1/2

and we also have by definition of ϕ′s and ϕ′t (Equation 3.22):(
∑

b∈Bi∪Bi∪Bj

γ
(
ϕ′s(b)→ ϕ′t(b)

)2
)1/2

= (t− s)WT2
(
B( fi),B( f j)

)
.

Now, given the triangle inequality on the path Pα, we have:

WT2
(
B( fi),B( f j)

)
≤

WT2
(
B0( fi → f j),Bs( fi → f j)

)
+ WT2

(
Bs( fi → f j),Bt( fi → f j)

)
+ WT2

(
Bt( fi → f j),B1( fi → f j)

)
≤
(
s + (t− s) + (1− t)

)
WT2

(
B( fi),B( f j)

)
= WT2

(
B( fi),B( f j)

)
.

If follows that the above inequalities are in fact equalities and we have:

WT2
(
Bs( fi → f j),Bt( fi → f j)

)
= (t− s)WT2

(
B( fi),B( f j)

)
.

Then, for any subdivision 0 = t0 ≤ t1 ≤ · · · ≤ tn = 1 of Pα, we have:

n−1

∑
k=0

WT2
(
Btk( fi → f j),Btk+1( fi → f j)

)
=

n−1

∑
k=0

(tk+1 − tk)WT2
(
B( fi),B( f j)

)
= (tn − t0)WT2

(
B( fi),B( f j)

)
= WT2

(
B( fi),B( f j)

)
.

Thus L(Pα) = WT2
(
B( fi),B( f j)

)
.

Hence the space of merge trees equipped with WT2 is a geodesic space,

and Bα( fi → f j) constructs paths of minimal length on it.

3.4.2 From Branch Decomposition Trees to Merge Trees

The previous section described the computation of geodesics between

BDTs, given WT2 . In this section, given an interpolated BDT Bα( fi → f j),

we describe how to retrieve the corresponding merge tree Tα( fi → f j) (i.e.

a merge tree whose BDT is indeed equal to Bα( fi → f j)).

A requirement for an arbitrary BDT B to be the valid BDT of a merge

tree T is that subtrees of B need to respect a nesting condition on their
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Figure 3.7 – Given two scalar fields fi (a) and f j (b), a simple interpolation of the

birth/death values of the branches of their BDTs may result in inconsistencies upon branch

destruction (red): the interpolated merge tree (black) in (c) is disconnected, unlike the

interpolated BDT (d). Our local normalization (Section 3.4.2) addresses this issue by en-

forcing nested birth/death values for nested branches. This results in a valid interpolated

merge tree (e) whose BDT is indeed equal to the interpolated BDT (e).

birth/death (i.e. x, y) values (to respect the Elder rule, Section 2.4). In

particular, given a direct child bk
α of a branch bα ∈ Bα( fi → f j), we need

to guarantee that [xk
bα

, yk
bα
] ⊆ [xbα

, ybα
]. While this is guaranteed by con-

struction for the subset Bα ⊆ Bα( fi → f j) (Bα is isomorphic to Bi and Bj),

this is not necessarily the case for the subsets of Bα( fi → f j) involved in

subtree creation or destruction (Bi
α and Bj

α, Section 3.4.1). In particular,

since the branches involved in destructions map independently to the di-

agonal (Equation 3.20), it is possible that the above nesting condition is

not respected along their interpolation. This is shown in Figure 3.7c (red

interpolation), where the resulting merge tree, Tα( fi → f j), becomes dis-

connected and hence invalid (i.e. Bα( fi → f j), Figure 3.7d, is connected

and not equal to the BDT of Tα( fi → f j) from Figure 3.7c).

In the following, we introduce a pre-processing step for the trees B( fi)

and B( f j) (together with its inverse post-processing step), which we call

local normalization, which addresses this issue and guarantees the above

nesting condition, even in case of destruction/creation.

Given a direct child bi
k of a branch bi ∈ B( fi), we consider the follow-

ing local, birth/death normalization N (bi
k) =

(
Nx(bi

k),Ny(bi
k)
)
:

Nx(bi
k) = (xbi

k − xbi)/(ybi − xbi)

Ny(bi
k) = (ybi

k − xbi)/(ybi − xbi).
(3.23)

Once this pre-process is recursively completed, the Wasserstein dis-

tance WT2 between the locally normalized BDTs, noted N
(
B( fi)

)
and

N
(
B( f j)

)
is computed as described in Section 3.3.3. Then, the interpo-

lation of the locally normalized BDTs, noted N
(
Bα( fi → f j)

)
, is evaluated

as described in Section 3.4.1. Next, the local normalization is recursively

reverted to turnN
(
Bα( fi → f j)

)
back into Bα( fi → f j), by explicitly evalu-
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ating N−1(bNα ) for each branch bNα ∈ N
(
Bα( fi → f j)

)
. Now, even in case

of branch destruction, by construction, the birth/death interval of each

interpolated branch N (bα), noted [Nx(bα),Ny(bα)], is included in [0, 1]

(since ∆
(
N (bi)

)
⊆ [Nx(bi),Ny(bi)] ⊆ [0, 1]). Therefore, after reverting the

local normalization, we have the guarantee that [xk
bα

, yk
bα
] ⊆ [xbα

, ybα
] for all

the branches bα of Bα( fi → f j).

At this stage, Bα( fi → f j) indeed respects the nesting condition on

the birth/death values of all its subtrees. Then, given the dual relation

between merge trees and BDTs, the merge tree Tα( fi → f j) can be simply

obtained by creating a vertical branch for each node bα of Bα( fi → f j)

and connecting them according the arcs of Bα( fi → f j), as illustrated in

Figure 3.7 (right). The distance WT2 between N
(
B( fi)

)
and N

(
B( f j)

)
then

still describes a metric between B( fi) and B( f j), such that Bα( fi → f j) is

indeed on a geodesic.

Let WN2
(
B( fi),B( f j)

)
be a similarity measure between B( fi) and

B( f j), defined as:

WN2
(
B( fi),B( f j)

)
= WT2

(
N
(
B( fi)

)
,N
(
B( f j)

))
where N is the local normalization described with Equation 3.23. Since N
is invertible, WN2 inherits all the properties of WT2 and is also a distance

metric.

The normalized interpolation Bs( fi → f j), s ∈ [0, 1] between B( fi) and

B( f j) is defined as the image by N−1 of the interpolation between the

normalized trees N (B( fi)) and N (B( f j)). Then, given s and t such that

0 ≤ s ≤ t ≤ 1, it follows that:

WN2
(
Bs( fi → f j),Bt( fi → f j)

)
= (t− s)WT2

(
N
(
B( fi)

)
,N
(
B( f j)

))
= (t− s)WN2

(
B( fi),B( f j)

)
which proves that the space of merge trees equipped with WN2 is a

geodesic space, and that the above normalized interpolation constructs

paths of minimal length on it.

Note that the local normalization shrinks all the input branches to the

interval [0, 1], irrespective of their original persistence. To mitigate this ef-

fect, we introduce a pre-processing step on the input BDTs, which moves,

up the trees, subtrees rooted at branches with a relative persistence smaller

than ϵ3, until their persistence relative to their parent becomes smaller

than a threshold ϵ2. This has the practical effect of reducing the normal-

ized persistence of small branches corresponding to small features. Over-

all, ϵ1, ϵ2 and ϵ3 are the only parameters of our approach and we use a
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unique, default set of values (ϵ1 = 0.05, ϵ2 = 0.95 and ϵ3 = 0.9) in our

experiments (Section 3.7). In the remainder, we will consider that all the

input BDTs are normalized this way.

3.5 Wasserstein Barycenters of Merge Trees

This section introduces our approach for the computation of barycenters of

merge trees, for the metric WT2 (Section 3.3). The resulting barycenters will

serve as core tools for clustering ensembles of merge trees (Section 3.6).

3.5.1 Definition

Let SB = {B( f1),B( f2), . . . ,B( fN)} be a set of N BDTs. Similarly to Equa-

tion 2.4, the Fréchet energy, under the metric WT2 , is given by:

F(B) = ∑
B( fi)∈SB

WT2
(
B,B( fi)

)2. (3.24)

We call a Wasserstein barycenter of SB , a BDT B∗ ∈ B (where B is the

space of BDTs) which minimizes F(B). It is a centroid of the set, i.e. a tree

which minimizes the sum of its distances to the set.

3.5.2 Computation

Our distance WT2 (Section 3.3) is identical to WD2 , but with a smaller search

space, restricted to rooted partial isomorphisms. This enabled an exten-

sion of interpolation-based geodesics from persistence diagrams to merge

trees (Section 3.4). Given these two components, the strategy presented by

Turner et al. [TMMH14] for minimizing the Fréchet energy over the space

of persistence diagrams can be directly extended to our framework. For

this, we consider an algorithm that resembles a Lloyd relaxation [Llo82],

and which alternates an (i) assignment and an (ii) update procedure. First,

the candidate B is initialized at an arbitrary tree of SB . Then the assign-

ment step (i) computes an optimal assignment (ϕ′i , BB , Bi) between B and

each tree B( fi) ∈ SB . Next, the update step (ii) updates the candidate B
to a position in B which minimizes F(B) under the current set of assign-

ments (ϕ′i , BB , Bi)i=1,...,N . This is achieved by moving each branch b ∈ B
(in the birth/death space) to the arithmetic mean of the assignments (by

generalizing the interpolation defined in Eqs. 3.19, 3.20, and 3.21, to more
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than two trees):

b← 1
N ∑

i=1,...,N


ϕ′i(b) if b ∈ BB

∆(b) if b ∈ BB

b if b ∈ Bi.

This overall assignment/update sequence is then iterated , each itera-

tion of this sequence decreases the Fréchet energy constructively).

In particular, once a local minimizer of the Fréchet energy is obtained

for a fixed assignment with the update step (ii), the subsequent assignment

step (i) does further improve the assignments hence iteratively decreasing

the Fréchet energy constructively.

Let F′ be a function of an arbitrary BDT B and of an arbitrary

(i.e. not necessarily optimal) set of N rooted partial isomorphisms

(ϕ′i, BB , Bi)i=1,...,N between B and the N BDTs of SB :

F′
(
B, (ϕ′i, BB , Bi)i=1,...,N

)
:= ∑

B( fi)∈SB

(
∑bi∈Bi

γ
(
bi → ϕ′i(bi)

)2

+∑bi∈Bi
γ(bi → ∅)2

+∑bB∈BB γ(∅→ bB)2
)1/2

.

Now, let Bk be the candidate barycenter at the iteration k of the al-

gorithm and let (ϕ′i
k, Bk
B , Bk

i ) be the optimal rooted partial isomorphism

between Bk and B( fi), computed by the assignment step of the iteration.

Then, we have:

F′
(
Bk, (ϕ′i

k, BBk, Bi
k)i=1,...,N

)
= ∑
B( fi)∈SB

WT2
(
Bk,B( fi)

)2.

Next, the update step of the iteration k consists in moving Bk to Bk+1 by

placing (in the 2D birth/death space) each branch b ∈ Bk at the arithmetic

mean of the assignments. Since the arithmetic mean generally minimizes

sums of Euclidean distances, we have:

F′(Bk+1, (ϕ′i
k, BBk, Bi

k)i=1,...,N) ≤ F′(Bk, (ϕ′i
k, BBk, Bi

k)i=1,...,N).

Now, observe that since the previous rooted partial isomorphisms are

not optimal anymore for Bk+1, we also have:

∑
B( fi)∈SB

WT2
(
Bk+1,B( fi)

)2 ≤ F′(Bk+1, (ϕ′i
k, BBk, Bi

k)i=1,...,N).

Once Bk+1 is fixed, all the rooted partial isomorphisms are then opti-

mized again with the assignment step of the iteration k + 1 to attain:

F′
(
Bk+1, (ϕ′k+1

i , BBk+1, Bi
k+1)i=1,...,N

)
= ∑
B( fi)∈SB

WT2
(
Bk+1,B( fi)

)2.
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The result of these two steps is that:

F′
(
Bk+1, (ϕ′k+1

i , BBk+1, Bi
k+1)i=1,...,N

)
≤ F′(Bk, (ϕ′i

k, BBk, Bi
k)i=1,...,N)

∑
B( fi)∈SB

WT2
(
Bk+1,B( fi)

)2 ≤ ∑
B( fi)∈SB

WT2
(
Bk,B( fi)

)2.

Then, each iteration of our algorithm indeed decreases the Fréchet en-

ergy. Since there is a finite number of combinations of rooted partial iso-

morphisms between the barycenter and the N input trees B( fi), it follows

that the algorithm converges, in a finite number of steps, to a local min-

imum B∗ of the Fréchet energy (if multiple, equally valued, optimal sets

of assignments exist between B∗ and SB , each one needs to be explored

with the update step of our algorithm). In practice, we stop our algo-

rithm when the Fréchet energy has decreased by less than 1% between

consecutive iterations.

In our implementation, the algorithm stops and returns the barycenter

estimation B∗ when the Fréchet energy decreased by less than 1% between

two consecutive iterations. Given B∗, we obtain its dual merge tree T ∗ as

described in Section 3.4.2. Figure 3.15 illustrates a barycenter computed

with this strategy for a toy example.

3.5.3 Parallelism

The N assignment problems (between the candidate B and the trees of the

set SB , Section 3.5.2) are independent and can be computed in parallel.

However, this naive strategy is subject to load imbalance, as the input

trees can have different sizes. Hence, each iteration would be bounded by

the sequential execution of the largest of the N assignment problems.

We address this issue by leveraging the task-based parallelization of

our distance computation algorithm (Section 3.3.4). In particular, we use

a single task pool for all of the N assignment problems. Then, the task

environment picks up at runtime the tasks to compute irrespective of their

tree of origin, and place them on different threads. This fine scheduling

granularity has the beneficial effect of triggering the execution of the tasks

of a new assignment problem while a first problem is reaching completion

(and thus exploiting less threads, Section 3.3.4). This improves thread load

imbalance and thus increases the overall parallel efficiency.
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Figure 3.8 – Tracking features (the five most persistent maxima, spheres) in time-varying

2D data (ion density during universe formation [TCWN08]): optimal assignment ϕ (a)

of WD2 (Section 2.4), optimal isomorphism ϕ′ (b) of WT2 (Section 3.3.2). Since WD2
considers persistence pairs individually, it can generate incorrect matchings resulting in

a characteristic crossing (a, red). Our distance improves this aspect (b) thanks to its more

constrained search space, which better preserves the global structure of the data.

3.6 Applications

The section illustrates the utility of our contributions (distances, geodesics,

and barycenters) in concrete visualization tasks (Figure 3.1).

3.6.1 Branch Matching for Feature Tracking

Our distance (Section 3.3.3) relies on the optimization of a partial isomor-

phism between the input BDTs. Then, the resulting matchings can be used

to track features in time-varying data, as studied for persistence diagrams

[SPCT18]. Figure 3.8 illustrates this on a temporal sequence (SciVis con-

test 2008 [TCWN08]). Since WD2 considers persistence pairs individually, it

can generate inconsistent matchings with a typical incorrect crossing in the

feature tracking (already visible on synthetic data, Figure 3.6). Our dis-

tance WT2 improves this aspect by better preserving the global structure of

the data, thanks to our more constrained, merge-tree driven, assignment

search space. Overall, our matchings provide visual hints to the users, to

help them relate features from distinct time steps.

3.6.2 Geodesics for Temporal Reduction

The topological analysis of time-varying data typically requires the com-

putation of a topological representation, for instance a merge tree, for

each time step. Although merge trees are usually orders of magnitude

smaller than the original data, the resulting sequence of merge trees can

still represent considerable amounts of data. To address this issue, we ex-

ploit our geodesic computation (Section 3.4) for the reduction of temporal

sequences of merge trees. In particular, we greedily remove from the se-
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Figure 3.9 – Geodesic computation for the reduction (b) of temporal sequences of merge trees (a). Our algorithm greedily

removes from the sequence the trees that it can accurately estimate by geodesic computation (trees with blue background (b)).

This reduction is also visualized with the three curves in (c), plotting the distance WT2 to the empty tree ∅ over time (multiple

colors: original sequence, cyan: reduction by WT2 , red: reduction by WD2 ). This iterated removal of trees highlights key

frames in the sequence (d-g) corresponding to key phases of an asteroid impact simulation [PG18]: initial state (black, time

steps 1-5), approach (light green, 6-10), impact (blue, 11-15), aftermath (light blue, 16-20). In contrast, a similar greedy

optimization based on the distance WD2 between persistence diagrams (red curve) fails at capturing the impact phase (blue) of

this sequence.

quence, one by one, the merge trees which can be accurately reconstructed

by simple geodesic computation, until the sequence only contains a target

number of merge trees.

Let S = {B( f1),B( f2), . . . ,B( fN)} be the input temporal sequence of

BDTs (we assume a regular temporal sampling). Let K ⊆ S be a set of

key frames. Let S ′ = {B′( f1),B′( f2), . . . ,B′( fN)} be a reduced temporal

sequence, where:

B′( fi) = (1− αi)B( f j) + αiB( fk) (3.25)

where B( f j) and B( fk) are two consecutive trees in K, such that j ≤ i ≤
k and αi = (i − j)/(k − j). B′( fi) is then on a geodesic between B( f j)

and B( fk). We introduce the following distance between the temporal

sequences S and S ′:

dS(S ,S ′) =
( N

∑
i=0

WT2
(
B( fi),B′( fi)

)2
)1/2

. (3.26)

dS is indeed a metric since it is a composition of metrics (being the L2

norm between vectors of BDTs under the metric WT2 ).

Our algorithm for temporal reduction consists in initializing K with

the entire input sequence (K ← S) and then removing greedily, at each

iteration, the tree B∗ from K (K ← K− {B∗}) which minimizes dS(S ,S ′),
and which, hence, better preserves the input sequence, until K reaches a

target size.
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Figure 3.10 – Comparison between the key frames identified by our temporal reduction

algorithm, with regard to WT2 (blue, top) and with regard to WD2 (red, bottom). By

construction, the reduction algorithm identifies as key frames the first and last time steps,

irrespective of the employed metric.

This enables the reliable visualization of time-varying sequences of

merge trees at greatly reduced storage costs. The remaining merge trees

(white background, Figure 3.9) correspond to key frames of the sequence,

i.e. time steps of particular significance in terms of the features of interest.

In contrast, a similar strategy based on persistence diagram interpolation

(red curve) fails at identifying a key frame in one of the key phases of the

sequence (impact, in blue). Also, note that the reduced merge trees (re-

constructed with geodesics, blue background) are visually highly similar

to the trees from the input sequence.

Figure 3.10 shows the temporal reduction performed by this algorithm

on the Asteroid impact sequence (see Appendix A). This figure illustrates

key frames, which correspond to time steps for which B( fi) = B′( fi):

these are the time steps which have not been removed from the sequence

through the reduction. In particular, this figure compares the usage of two

metrics in the reduction algorithm: WT2 (blue, top) and WD2 (red, bottom,

obtained with ϵ1 = 1). By construction, since our reduction algorithm

is based on interpolation only, the first and last BDTs in the sequence S
are always kept in the reduced sequence S ′. In other words, the first

(leftmost, Figure 3.10) and last (rightmost, Figure 3.10) time steps are al-

ways identified as key frames, irrespective of the employed metric. For

this specific example, the second key frame (second from left, Figure 3.10)

also happens to be identical for both metrics. In contrast to the sequence

extremities, the common identification of this time step as a key frame

by WT2 and WD2 is not obtained by construction: the reduction algorithm

did select this key frame in both configurations. Then, only the third key

frame (third from left, Figure 3.10) is different in this example. In par-

ticular, when using WT2 , the reduction algorithm identifies one key frame
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per key phase of the simulation (see Appendix A, each key phase is rep-

resented in Figure 3.10 with a frame of distinct color). In contrast, when

using WD2 , the third key frame belongs to the same key phase as the last

key frame (“Aftermath”, light blue frame). Then the reduction driven by

WD2 fails at identifying a key frame for the third key phase (“Impact”, dark

blue frame). This is confirmed visually in Figure 3.10, as the third key

frame identified with WT2 (in blue) seems to represent an intermediate

step in the simulation between the second and fourth key frames. In con-

trast, the third key frame identified by the reduction with WD2 (in red) is

more visually similar to the fourth key frame, and hence possibly more

redundant.

3.6.3 Barycenters for Topological Clustering

To understand the main trends within an ensemble, in terms of features of

interest, it may be desirable to cluster the ensemble by grouping members

with a similar topological profile. For this, we adapt the k-means algorithm

[Elk03, CKV13] to the problem of clustering merge trees. In particular,

this can be easily achieved by using our merge tree barycenter computa-

tion algorithm (Section 3.5) as the centroid estimation routine of k-means,

and by using WT2 (Section 3.3) to measure the distance between merge

trees. Note that in practice, our entire computational framework is imple-

mented in this single clustering algorithm (with a unique task pool), as

the above clustering generalizes the barycenter problem (k = 1) as well as

the geodesic and distance problems (N = 2).

Figure 3.11 and Figure 3.12 present clustering examples obtained

with this strategy on an acquired [FHG+
14] and cosmology ensemble

[HGTS15]. In both cases, our approach correctly assigns the members

to each cluster. Moreover, the centroids computed by our algorithm pro-

Figure 3.11 – Three members (a) of an acquired ensemble, corresponding to distinct

volcanic eruptions [FHG+14]. Our clustering approach correctly assigns the members to

each cluster (b, distinct colors in the planar view, generated in a post-process by multi-

dimensional scaling of WT2 ). Our centroids (larger spheres in the planar view) provide a

visual summary of the features of interest (matching colors) for each cluster.
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Figure 3.12 – Eight members (top) of a cosmology ensemble [HGTS15], and their merge

trees (persistent maxima are displayed with matching colors in the data). Our clustering

approach correctly assigns the members to each cluster (distinct colors in the bottom pla-

nar view, generated in post-process by multi-dimensional scaling of WT2 ). Our centroids

(large spheres, bottom) provide a visual summary which is well representative of the trees

in the cluster (same number and persistence of large branches, automatically color-coded

based on their matching to their centroid).

vide a visual summary of the features of interest found in each cluster,

enabling global overviews (Figure 3.11, right, and Figure 3.12, bottom)

summarizing the topological profile of each of the main trends found in

the ensemble. In both figures, the tree branches of the ensemble members

are automatically colored with the color of their matched centroid branch.

This matching visualization enables users to visually relate the centroid to

concrete features in the data (Figure 3.11) and to compare matching fea-

tures across multiple members (i.e. which have been matched to the same

centroid branch, Figure 3.12). Then, the centroid, in addition to being a

visual summary, also acts as a reference point for the visual comparison

of ensemble members.

3.7 Results

This section presents experimental results obtained on a computer with

two Xeon CPUs (3.2 GHz, 2x10 cores, 96GB of RAM). The input merge

trees were computed with FTM [GFJT19a] and pre-processed to discard

noisy features (persistence simplification threshold: 0.25% of the data

range). We implemented our approach in C++ (with the OpenMP task

runtime), as modules for TTK [TFL+
17, BMBF+

19].

Our experiments were performed on a variety of simulated and ac-

quired 2D and 3D ensembles used in previous work [FFST18] (vortic-

ity and sea surface height) or extracted from past SciVis contests: 2004

(wind velocity magnitude [WBKS04]), 2006 (wavefront velocity magni-
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tude [ODM+
06]), 2008 (ion concentration [TCWN08]), 2014 (sulfur dioxide

concentration [FHG+
14]), 2015 (dark matter density [HGTS15]), 2016 (salt

concentration [GGH+
16]), 2017 (pressure [WCG+

17] ), 2018 (matter den-

sity [PG18]). A detailed specification of these ensembles is provided in

Appendix A.

3.7.1 Time Performance

The time complexity of our algorithm for exploring the search space of

WT2 (Section 3.3.3) is similar to that of the edit distance [Zha96, SMKN20].

It takes O(|B|2) steps in practice, with |B| the number of nodes in the

input BDTs (in our implementation, each local forest assignment problem

is solved with the efficient Auction approximation [Ber81] with default

parameters). Once WT2
(
B( fi),B( f j)

)
is computed, the computation of a

point on the geodesic (Section 3.4) between B( fi) and B( f j) is obtained

in O(|B|) steps. Regarding our barycenter computation algorithm (Sec-

tion 3.5), each of its iterations takes O(N|B|2) steps. Table 3.1 evaluates

the practical time performance of our computational framework for the

barycenter computation (which includes itself distance and geodesic com-

putations). In sequential mode, we observe that the running time is indeed

a function of the number of ensemble members (N) and the average size

of the trees (B). It is slightly slower for WT2 than for WD2 , but runtimes

remain comparable overall. In parallel, speedups are the most important

for the largest examples. However, the iterative nature of our barycenter

optimization algorithm seems to limit parallel efficiency globally (the end

of each iteration still constitutes a strong synchronization). For the smaller

Table 3.1 – Running times (in seconds, 10 run average) of our approach for the barycenter

computation, with respect to WD2 (ϵ1 = 1, Section 3.3.3, sequential) and to our new

metric WT2 (sequential, then with 20 cores).

Dataset N |B| WD2 (1 c.) WT2 (1 c.) WT2 (20 c.) Speedup

Asteroid Impact [PG18] (3D) 7 1,295 514.71 450.91 93.11 4.84

Cloud processes [WCG+
17] (2D) 12 1,209 54.90 124.99 35.14 3.55

Viscous fingering [GGH+
16] (3D) 15 118 5.68 5.12 3.89 1.31

Dark matter [HGTS15] (3D) 40 2,592 3,172.37 3,083.24 471.45 6.53

Volcanic eruptions [FHG+
14] (2D) 12 811 171.13 140.02 48.52 2.88

Ionization front [TCWN08] (2D) 16 135 10.40 12.10 8.20 1.47

Ionization front [TCWN08] (3D) 16 763 682.76 1,277.72 219.61 5.81

Earthquake [ODM+
06] (3D) 12 1,203 191.54 509.59 117.31 4.34

Isabel [WBKS04] (3D) 12 1,338 330.88 284.19 62.70 4.53

Starting Vortex [FFST18] (2D) 12 124 7.72 5.58 6.11 0.91

Sea Surface Height [FFST18] (2D) 48 1,787 4,509.78 10,557.07 881.49 11.97

Vortex Street [FFST18] (2D) 45 23 1.71 1.90 1.44 1.31
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examples, the cost of the task runtime seems to become non-negligible in

comparison to the actual computation, resulting in moderate speedups.

Still, our parallelization significantly reduces runtimes overall, with less

than 3 minutes of computation on average and at most 15 minutes for the

largest examples.

3.7.2 Framework Quality

WT2 is indeed a distance metric (Section 3.3.2). It is more discriminative

than WD2 (i.e. WT2 ≥ WD2 , Section 3.3, Figure 3.2). Figure 3.13 evaluates

empirically its stability. For this, given a scalar field fi, a noisy version f j

is created such that ∥ fi − f j∥∞ ≤ ϵ, for increasing values of ϵ. Then, we

observe the evolution of WT2
(
B( fi),B( f j)

)
, as a function of ϵ (Figure 3.13,

right), to estimate how WT2 varies under input perturbations. For ϵ1 = 1,

we have WT2 = WD2 (Section 3.3) and the curve evolves nearly linearly

(WD2 is stable [TMMH14]). For other ϵ1 values, the curves indicate clear

transition points (colored dots) before which WT2 evolves nearly linearly

too. This indicates that for reasonable noise levels (smaller than the ϵ

value of each transition point, vertical lines), WT2 is also stable and that

only mild increases of ϵ1 result in fast shifts of these transition points

(to an accepted noise level of 64% at ϵ1 = 0.15). This illustrates overall

that the stability of WT2 can indeed be controlled with ϵ1 and that small

values already lead to stable results for reasonable noise levels. A detailed

empirical analysis of the other two parameters of our approach (ϵ2, ϵ3,

Section 3.4.2) is provided in Appendix B.

Next, we study the practical relevance of WT2 by evaluating our

clustering performance. For this, each ensemble of Table 3.1 is associ-

ated with a ground truth classification (distinct phases of a time-varying

phenomenon, distinct input parameters, etc), by following the com-

Figure 3.13 – Empirical stability evaluation. Given an input scalar field fi, a noisy

version f j is created by inserting a random noise of increasing amplitude ϵ (left). The

evolution of WT2
(
B( fi),B( f j)

)
with ϵ (right), for varying values of ϵ1 (Section 3.3.2),

indicates clear transition points (colored dots) before which WT2 evolves nearly linearly.

Before these transition points (i.e. before these noise levels, vertical lines), WT2 is stable.
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Figure 3.14 – Evolution of the Fréchet energy for estimating the barycenter (b) for an

ensemble of 100 noisy variants of four fields (a). The energy (c) is shown for several ϵ1

values (Section 3.3.2). In practice, we stop the algorithm when the energy decreases by

less than 1% (vertical lines).

panion specifications [WBKS04, ODM+
06, TCWN08, FHG+

14, HGTS15,

GGH+
16, WCG+

17, PG18]. Clustering performance is evaluated with ac-

cepted scores, namely the normalized mutual information and adjusted

rand index (NMI, ARI). When using our barycenters (Section 3.5), our

clustering approach (Section 3.6.3) achieves a perfect classification for all

ensembles (NMI = ARI = 1). These scores decrease to NMI = 0.78

and ARI = 0.69 on average when using, within k-means, a barycenter

of persistence diagrams [TMMH14] (ϵ1 = 1), and to NMI = 0.73 and

ARI = 0.56 when using the 1-center of Yan et al. [YWM+
19b] (obtained

with the authors’ implementation [YWM+
19a], using leaf labels generated

by our distance computation, Section 3.3). This simply confirms experi-

mentally that 1-centers in general are not suited for clustering tasks. A

standard clustering approach (multi-dimensional scaling to kD followed

by k-means) using the distance DE [SMKN20] achieves lower average

scores than our approach, with NMI = 0.89 and ARI = 0.85 on aver-

age. Overall, this confirms that DE induces more discriminative classifiers

than WD2 , and that our metric WT2 further improves that.

Figure 3.14 shows the evolution of the Fréchet energy for our barycen-

ter algorithm (Section 3.5) for various ϵ1 values. In practice, the algorithm

stops when the Fréchet energy decreases by less than 1% between consec-

utive iterations, which occurs early in the process.

Figure 3.15 provides a visual comparison between our barycenter and

the 1-center of Yan et al. [YWM+
19b] (obtained with the authors’ im-

plementation [YWM+
19a], using leaf labels generated by our distance

computation, Section 3.3). This figure confirms the general sensitivity in

practice of 1-centers to outliers, and the ability of barycenters to better

capture the main trends in the ensemble. From a qualitative perspec-

tive, our framework enables the computation of faithful interpolations of

merge trees: the reconstructed trees, blue background (Figure 3.9), are vi-

sually very similar to the input trees. Moreover, our framework produces
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Figure 3.15 – Visual comparison between our barycenter (Section 3.5) and the 1-center

of Yan et al. [YWM+19b, YWM+19a]. Left: an ensemble is created with an outlier

member f j (red, 7 persistent branches) and 10 noisy versions of a field fi (4 persistent

branches). Right: planar view of the ensemble computed by multi-dimensional scaling

of WT2 . The barycenter computed with our approach (cyan) is more similar to the merge

trees of fi (same number and persistence of large branches) and hence better captures the

overall trend of the ensemble, despite the presence of the outlier f j (red sphere).

barycenters (Figure 3.1, Figure 3.11, and Figure 3.12) which capture well

the main features of the input ensemble: for each cluster, the resulting cen-

troid is visually similar to the input trees of the cluster (same number and

persistence of large branches). Then, our clustering framework, coupled

with our centroids, provides a faithful visual summary of the features of

interest, for each of the main trends (i.e. for each cluster) found in the

ensemble.

3.7.3 Limitations

The search space associated with our metric WT2 is constrained to rooted

partial isomorphisms. Then, if a matching exists between two BDTs (i.e.

if they are not both destructed when optimizing WT2 ), it has to match

their roots together. In other words, WT2 nearly always matches the most

persistent branch of the two trees together, which might be too restrictive

(in particular for feature tracking applications). Note however, that WD2
behaves equivalently: the most persistent branch of B( fi) corresponds to

the component of fi
−1
−∞(w) created in the global minimum of fi, which in

principle has infinite persistence and which is typically treated separately

when evaluating WD2 . Similarly to Sridharamurthy et al. [SMKN20], sad-

dle swap instabilities are handled in our approach by a pre-processing step

which merges adjacent saddles (controlled by ϵ1). An alternative would

consist in exploring the space of all possible branch decompositions (not

necessarily persistence-driven), as studied by Beketayev et al. [BYM+
14].

However, the search space would then become significantly larger. More-

over, the nesting of birth/death values within the BDTs would no longer

be guaranteed, which is however a key property which we exploit in our

framework (Section 3.4). When computing barycenters of persistence dia-
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grams, Vidal et al. [VBT20] showed that the optimization could be drasti-

cally accelerated by introducing persistence pairs progressively along the

iterations, while implicitly maintaining previous assignments at each ini-

tialization. We leave the study of such a progressive strategy to future

work, although the fact that WT2 handles many small assignment prob-

lems (unlike WD2 ) indicates that such a strategy may result in only modest

gains for merge trees. Figure 3.13 provides an empirical evaluation of the

stability of WT2 . Similarly to Sridharamurthy et al. [SMKN20], we believe

that the theoretical investigation of the stability of WT2 goes beyond the

scope of this work and we leave it for future work.

3.8 Summary

In this chapter, we presented a computational framework for the estima-

tion of distances, geodesics and barycenters of merge trees, with appli-

cations to feature tracking, temporal reduction and ensemble clustering

and summarization. Our approach filled the gap between the edit dis-

tance [SMKN20] and existing optimization frameworks for persistence di-

agrams [TMMH14]. Our work enables faithful interpolations of merge

trees (Figure 3.9) and the generation of merge trees representative of a

set (Figure 3.1, Figure 3.11, and Figure 3.12). Moreover, our task-based

algorithm enables automatic barycenter computations within minutes for

real-life ensembles.
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This chapter presents a computational framework for the Principal

Geodesic Analysis of merge trees (MT-PGA), a novel adaptation of

the celebrated Principal Component Analysis (PCA) framework [Pea01] to

the Wasserstein metric space of merge trees introduced in Chapter 3. We

formulate MT-PGA computation as a constrained optimization problem,

aiming at adjusting a basis of orthogonal geodesic axes, while minimizing

a fitting energy. We introduce an efficient, iterative algorithm which ex-

ploits shared-memory parallelism, as well as an analytic expression of the

fitting energy gradient, to ensure fast iterations. Our approach also triv-

ially extends to extremum persistence diagrams. Extensive experiments

on public ensembles demonstrate the efficiency of our approach – with

MT-PGA computations in the orders of minutes for the largest examples.

We show the utility of our contributions by extending to merge trees two

typical PCA applications. First, we apply MT-PGA to data reduction and

reliably compress merge trees by concisely representing them by their first

coordinates in the MT-PGA basis. Second, we present a dimensionality re-

duction framework exploiting the first two directions of the MT-PGA basis

to generate two-dimensional layouts of the ensemble. We augment these

layouts with persistence correlation views, enabling global and local visual

inspections of the feature variability in the ensemble. In both applications,

quantitative experiments assess the relevance of our framework. Finally,

we provide a C++ implementation that can be used to reproduce our re-

sults.

The work presented in this chapter has been published in the jour-

nal IEEE Transactions on Visualization and Computer Graphics in 2022

[PVT23]. It was certified replicable by the Graphics Replicability Stamp

Initiative (http://www.replicabilitystamp.org/). Our implementation is

available at https://github.com/MatPont/MT-PGA and the data used in

this work at https://github.com/MatPont/WassersteinMergeTreesData.

It is also integrated in the Topology ToolKit [TFL+
17].

http://www.replicabilitystamp.org/#https-github-com-matpont-mt-pga
https://github.com/MatPont/MT-PGA
https://github.com/MatPont/WassersteinMergeTreesData
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Our Contributions in one Image

Figure 4.1 – Visual analysis of the Earthquake ensemble with Merge Tree Principal Geodesic Analysis (MT-PGA, (a): one

member per ground-truth class). Our framework computes a coordinate system (b) for the Wasserstein metric space of merge

trees B by adjusting geodesic axes (blue and black, (b)) to optimize a fitting energy. This enables the adaptation to merge

trees of typical applications of Principal Component Analysis, such as data reduction, where the input trees are accurately

reconstructed ((c), right), by simply storing their MT-PGA coordinates, or dimensionality reduction. MT-PGA enables the

computation of a Principal Geodesic Surface (b), which complements its planar layout (g) by better conveying visually the

curved nature of B. MT-PGA supports the efficient reconstruction of user-defined locations, for the interactive exploration

of B: the reconstruction of the purple curve (f) enables the navigation from the trees of the first cluster (dark red, (b)) to the

second (orange, (b)) and third (pink, (b)) clusters. MT-PGA also introduces Persistence Correlation Views (d) which enable

the visual identification of the features which are the most responsible for the variability in the ensemble (high correlation, near

the disk boundary, (d)) as well as their direct inspection in the data (matching colors (a)).
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4.1 Context

A series of recent works focused on the notion of average for persistence

diagrams [TMMH14, LCO18, VBT20, YWM+
19b] and we explored this

notion for merge trees in Chapter 3, with applications to ensemble sum-

marization and clustering. However, while such averages synthesize a

topological descriptor which is well representative of the ensemble, they do

not describe the topological variability of the ensemble.

This chapter addresses this issue and goes beyond simple averages

by adapting the celebrated framework of Principal Component Analysis

(PCA) [Pea01] to ensembles of merge trees. For that, we introduce the

novel notion of “Merge-Tree Principal Geodesic Analysis” (MT-PGA), which

captures the most informative geodesics (i.e. analogs of straight lines on

the abstract space of merge trees) given the input ensemble, hence facilitat-

ing variability analysis and visualization. In particular, we formalize the

computation of an orthogonal basis of principal geodesics in the Wasser-

stein metric space of merge trees (Chapter 3) as a constrained optimization

problem (Section 4.2), inspired by previous work on the optimal transport

of histograms [SC15, CSB+
18], which we extend and specialize to merge

trees. We introduce an efficient iterative algorithm (Section 4.3), which

exploits an analytic expression of the energy gradient to ensure fast iter-

ations. Moreover, we document accelerations with shared-memory par-

allelism. Extensive experiments (Section 4.5) indicate that our algorithm

produces bases of acceptable reconstruction quality within minutes, for

real-life ensembles extracted from public benchmarks. We illustrate the

utility of our contribution in two applications. First, we show that the

principal geodesic bases computed by our algorithm can result in an im-

portant compression of ensembles of merge trees, while still enabling a

successful post-processing for typical visualization tasks such as feature

tracking or ensemble clustering. Second, we present an extended appli-

cation of our work to dimensionality reduction, for the visual inspection

of the ensemble variability via two-dimensional embeddings, where we

show that the views generated by our approach preserve well the intrinsic

metric between merge trees, as well as the global structure of the input

ensembles. Since our framework is based on the Wasserstein distance be-

tween merge trees (Chapter 3), which generalizes the Wasserstein distance

between persistence diagrams [TMMH14], it trivially extends to persis-

tence diagrams by simply adjusting a parameter.
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4.1.1 Related Work

We refer to Section 3.1.1 for an overview of the literature regarding uncer-

tainty visualization, ensemble visualization and topological methods. Al-

though the topology-based methods presented in Section 3.1.1 addressed

the visualization of ensembles of topological objects (e.g. by presenting a

representative descriptor, such as a barycenter), they did not focus explic-

itly on the statistical analysis of the feature variability among the ensemble

of descriptors.

Principal Component Analysis (PCA) [Pea01] is a classical approach

for the analysis of variability in vectorized data (i.e. point clouds in

Euclidean spaces). Extensions have been investigated for metric spaces

[GKWZ08, GZ09, FLPJ04], including transport based distances [Cut13]

between histograms [SC15, CSB+
18]. However, these methods are not

directly applicable to merge trees. They focus on fundamentally different

objects (histograms). Thus, their distances, geodesics and barycenters are

defined differently (in particular in an entropic form [Cut13, CD14]) and

the algorithms for their computations are drastically different (based on

Sinkhorn matrix scaling [Sin67]). Our global strategy (also based, at a high

level, on an alternation of fitting and constraint enforcement, Section 4.2)

can be interpreted as an extension of this line of work, but we revisit it

completely, to specialize it to merge trees.

As detailed in Section 4.2, the development of a computational frame-

work for Principal Geodesic Analysis (PGA) over an ensemble of topologi-

cal objects requires several key, low-level, geometrical ingredients, namely

(i) a distance metric (to measure distances between objects), (ii) a geodesic

estimation routine (to model the axes of the PGA basis) and (iii) a barycen-

ter estimation routine (to compute the origin of the PGA basis). We review

now the previous work related to these aspects.

Distance metrics have been studied for most of the above topological

objects. Inspired by the literature in optimal transport [Kan42, Mon81], the

Wasserstein distance between persistence diagrams [EH09] (Section 2.4.1)

has been extensively studied. It is based on a bipartite assignment prob-

lem, for which exact [Mun57] and approximate [Ber81, KMN17] imple-

mentations are publicly available [TFL+
17]. However, the persistence

diagram can lack specificity in its data characterization and more ad-

vanced topological descriptors, such as merge trees (Section 2.5), are of-

ten reported to differentiate datasets better ([MBW14, BYM+
14, SMKN20]

and Chapter 3). Several similarity measures have been introduced for
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Reeb graphs [HSKK01] and their variants [SSW14]. However, since these

measures are not metrics (the preservation of the triangle inequality is

not specifically enforced), they are not conducive to the computation of

geodesics. Stable distance metrics between Reeb graphs [BGW14] and

merge trees [MBW14] have been studied from a theoretical point of view

[BCLM21] but their computation, following an exponential time complex-

ity, is not tractable for practical datasets in general. Distances with polyno-

mial time computation algorithms have also been investigated. Beketayev

et al. [BYM+
14] focus on the branch decomposition tree (BDT, Section 2.5),

and estimate their distances by iteratively reducing a target mismatch term

over a significantly large search space. Sridharamurthy et al. [SMKN20]

specialize efficient algorithms for computing constrained edit distances

between trees [Zha96] to the special case of merge trees, resulting in a

distance which is computable for real-life datasets and with acceptable

practical stability. Based on this edit distance, we have introduced a gen-

eralization of the L2-Wasserstein distance between persistence diagrams

[TMMH14] for merge trees in Chapter 3, thereby enabling the efficient

computation of distances, geodesics and barycenters of merge trees.

Regarding the estimation of a representative object from a set of topo-

logical representations, multiple approaches emerged recently. Several

methods [TMMH14, LCO18, VBT20] have been introduced for the es-

timation of barycenters of persistence diagrams (or vectorized variants

[ACE+
17, Bub15]). A recent work [YWM+

19b] introduced a framework

for computing a 1-center of a set of merge trees (i.e. minimizing its max-

imum distance to the set), for an interleaving distance [GMO+
19]. How-

ever, this approach requires pre-existing, reliable correspondence labels

between the nodes of the input trees, which is not practical for real-life

datasets (heuristics need to be considered). Also, the resulting represen-

tative merge tree is not a barycenter (it does not minimize a Fréchet en-

ergy, i.e. a sum of distances to the set). Thus, it cannot be used directly

for PGA. In contrast, the barycentric framework of Chapter 3 automati-

cally minimizes a Fréchet energy explicitly. Thus, the resulting barycen-

ter merge tree can be directly used for PGA. Another line of approaches

aimed at directly applying the classical PCA (or variants from the matrix

sketching literature [Woo14]) to vectorizations of topological descriptors

[RT16, AVRT16, LPW21], i.e. by first converting each topological descrip-

tor into a (high-dimensional) Euclidean vector and then leveraging tradi-

tional tools from linear algebra (e.g. classical PCA) on these vectors. How-

ever, vectorizations are in general subject to a number of limitations. They
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are prone to approximation errors (due to quantization and linearization

artifacts), they can be difficult to revert (which challenges their usage for

visualization applications) and their stability is not always established. In

contrast, our approach directly manipulates merge trees in the Wasserstein

metric space, and not linear approximations in a Euclidean space. This re-

sults in a faithful formulation of merge tree PGA, which ensures improved

accuracy and interpretability (cf. experiments, Section 4.5.2).

4.1.2 Contributions

This chapter makes the following new contributions:

1. An approach to Principal Geodesic Analysis of Merge Trees (MT-PGA): We

formulate the definition of an orthogonal basis of principal geodesics

in the Wasserstein metric space of merge trees (Chapter 3) as a con-

strained optimization problem. Our formulation (Section 4.2) ex-

tends previous work on histograms [SC15, CSB+
18] and specializes

it to merge trees.

2. An optimization algorithm for MT-PGA: We introduce an efficient op-

timization algorithm (Section 4.3) for MT-PGA. Each iteration alter-

nates between (i) a minimization of the fitting energy of the MT-PGA

basis and (ii) a constraint enforcement. Our algorithm exploits an

analytic expression of the fitting energy gradient, to ensure fast iter-

ations. We document accelerations based on shared-memory paral-

lelism and report running times in the orders of minutes for real-life

ensembles.

3. An application to data reduction: We present an application to data

reduction (Section 4.4.1), where the merge trees of the input ensem-

ble are significantly compressed, by solely storing the MT-PGA basis

and the coordinates of the input merge trees in the basis. We illus-

trate the utility of this reduction with applications to feature tracking

and ensemble clustering.

4. An application to dimensionality reduction: We present an application to

dimensionality reduction (Section 4.4.2), by embedding each merge

tree as a point in a planar view, based on its first two coordinates in

the MT-PGA basis. We also contribute derived visualizations – the

Principal Geodesic Surface and the Persistence Correlation View – which

enable the visual inspection of the individual features which are the

most responsible for the variability in the ensemble.
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5. Implementation: We provide a C++ implementation of our

algorithms that can be used for reproduction purposes:

https://github.com/MatPont/MT-PGA

4.2 Formulation

This section describes our novel extension of the Principal Component

Analysis (PCA) framework to the Wasserstein metric space of merge trees,

leading to the new notion of merge tree Principal Geodesic Analysis (MT-

PGA). This section is structured as follows. First, we describe a geometric

interpretation of PCA (Section 4.2.1), which our approach extends. Next,

we describe how to generalize each low-level geometrical tool used in

PCA (Section 4.2.1) to the Wasserstein metric space of merge trees B (Sec-

tion 4.2.2). Finally, once these tools are available, we formalize our no-

tion of MT-PGA as a constrained optimization problem (Section 4.2.4), for

which we provide an algorithm in Section 4.3 (an overview of the algo-

rithm is given in Section 4.3.1).

4.2.1 Geometric Interpretation of PCA

Principal Component Analysis (PCA) [Pea01] can be described with sev-

eral, different, yet equivalent, formulations. In the following, we focus

on a geometric interpretation (Figure 4.2) which simplifies the transition

to merge trees. Given a set of points P = {p1, p2, . . . , pN} in a Euclidean

space Rd, PCA defines an orthogonal basis BRd = {
#»

b1,
#»

b2, . . . ,
#»

bd} of vectors
#»

bi ∈ Rd (i ∈ {1, . . . , d}), with origin ob ∈ Rd, such that:

1. the origin ob coincides with the arithmetic mean of P,

2. the line li (defined by ob and
#»

bi ) is orthogonal to all previous lines li′

(i′ ∈ {1, . . . , i− 1}) and minimizes its average squared distance to P.

Let ∆i(pj) be the orthogonal projection of the point pj on li (i.e. ∆i(pj)

is the closest point to pj on li, Figure 4.2). It can be expressed as a dis-

placement from ob on li: ∆i(pj) = ob + α
j
i

#»

bi , with α
j
i ∈ [−1, 1]. Then, BRd

can be formulated as an orthogonal basis which minimizes the following

data fitting energy (with d′ = d in general):

EL2(BRd) =
N

∑
j=1
||pj −

(
ob +

d′

∑
i=1

α
j
i

#»

bi
)
||22. (4.1)

In practice, BRd can be optimized iteratively, one dimension at a time

(starting with d′ = 1 and finishing with d′ = d), by finding at each iteration

https://github.com/MatPont/MT-PGA
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Figure 4.2 – The classical Principal Component Analysis (PCA) of a point cloud P in Rd

(white spheres) can be computed by iteratively optimizing the fitting to P of orthogonal

directions (blue axis first, then black axis).

a vector
# »

bd′ which is orthogonal to all the previous vectors in BRd (
# »

bd′ ·
#  »

bd′′ =

0, ∀d′′ ∈ {1, . . . , d′ − 1}) and which minimizes EL2 (Equation 4.1). After all

dimensions have been processed (d′ = d), BRd provides a new coordinate

system for P (composed of the vectors
#»

bi and the coordinates α
j
i for each

point pj), such that each direction of BRd successively provides an optimal

fit to P (Equation 4.1). Note that, by construction, the variance of the

projected data (i.e. the variance of ∆d′(pj) along ld′) will be maximized for

the first direction (d′ = 1) and it will keep on decreasing for increasing

d′. This motivates early terminations of the optimization (for d′ < d), as

the most informative directions are identified in the first iterations of the

algorithm.

4.2.2 From PCA to MT-PGA

When the input data is not given as a point cloud in a Euclidean space

(Section 4.2.1) but as an abstract set equipped with a metric, the above for-

mulation of Principal Component Analysis (PCA) needs to be extended.

Such an extension can be done with the more general notion of Principal

Geodesic Analysis (PGA), which needs itself to be specifically instantiated

given the specific metric space under study [FLPJ04, SC15, CSB+
18]. This

instantiation consists in redefining the low-level geometrical tools used

in PCA , but within the considered metric space. For instance, geodesics

(length-minimizing paths) between merge trees (Section 3.4) extend to B

the notion of straight lines, and the Fréchet mean (Section 3.5) extends

the arithmetic mean. In this section, we specifically formulate such an ex-

tension for merge trees (MTs). In particular, we formalize the following



86 Chapter 4. Principal Geodesic Analysis of Merge Trees and Persistence Diagrams

low-level geometrical notions for the Wasserstein metric space of merge

trees B (see Section 4.2.3 for detailed illustrations):

i. BDT geodesic dot product;

ii. Orthogonal BDT geodesics;

iii. Collinear BDT geodesics;

iv. BDT geodesic axis;

v. BDT geodesic axis arc-length parametrization;

vi. BDT geodesic axis projection;

vii. BDT geodesic axis translation;

viii. BDT geodesic orthogonal basis.

The above notions derive sequentially from one another, to eventu-

ally result in the concept of orthogonal bases of BDT geodesic axes, which is

precisely the main variable of the constrained optimization problem for

MT-PGA formulation (Section 4.2.4).

(i) BDT geodesic dot product. A geodesic on the Wasserstein metric space

of merge trees B is the shortest path
#»G
(
E , E ′

)
between its two extrem-

ity BDTs E and E ′. It is an optimal assignment with regard to Equa-

tion 3.4, which can be represented as a vector in R2×|E| obtained by con-

catenating the |E | 2D vectors (Figure 4.4b) representing the optimal as-

signment ϕ′ ∈ Φ′ in the 2D birth/death space. Then, given two geodesics
#»G
(
E , E ′

)
∈ R2×|E| and

#»G
(
E , E ′′

)
∈ R2×|E| sharing an extremity E , their dot

product, noted
#»G
(
E , E ′

)
· #»G
(
E , E ′′

)
can be naturally introduced by consid-

ering their Cartesian dot product (i.e. sum of component-wise products

between two vectors in R2×|E|). Note that these two vectors must be con-

sistently parametrized with regard to their common extremity E : for both

vectors, the ith entry represents a 2D vector in the birth/death space mod-

eling the optimal assignment (with regard to Equation 3.4) of the ith point

of E to points of E ′ and E ′′ (small arrows, Figure 4.4d).

(ii) Orthogonal BDT geodesics. Two geodesics
#»G
(
E , E ′

)
and

#»G
(
E , E ′′

)
are

orthogonal if
#»G
(
E , E ′

)
· #»G
(
E , E ′′

)
= 0.

(iii) Collinear BDT geodesics. Two geodesics
#»G
(
E , E ′

)
and

#»G
(
E , E ′′

)
are
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Figure 4.3 – Approach overview: Our merge tree Principal Geodesic Analysis (MT-PGA) defines a basis BB on the Wasser-

stein metric space of BDTs B (grey surface). It is computed by iteratively optimizing a fitting energy (Equation 4.5) to an

input ensemble of BDTs (white spheres) for orthogonal geodesic axes (blue:
←→A1 , black:

←→A2). Each axis (e.g.
←→A1) is defined

as a pair of geodesics between its extremities (E1 and E ′1) and the Fréchet mean of the ensemble (cyan: B∗). After the

optimization of the MT-PGA basis, any input BDT B( f j) can be reconstructed into B̂( f j) (dark blue sphere) by successive

geodesic displacements (dark blue arrows, Equation 4.13) along translations of the axes (e.g.
←→A2
(
B̂1( f j)

)
, black dashed

curve), given the coordinates αj of B( f j) in the basis. While our framework manipulates BDTs, each of them can be directly

inverted (transparent arrows) back to MTs (insets), resulting in reconstructions (T̂ ( f j)) that are visually similar to the input

(T ( f j)).

collinear if
#»G
(
E , E ′

)
= λ

#»G
(
E , E ′′

)
, with λ ∈ R. In particular, they are

positively collinear if λ > 0, and negatively collinear if λ < 0.

(iv) BDT geodesic axis. Now that the notion of collinear geodesics is

available, we proceed to the introduction of the concept of geodesic axis.

Given an origin BDT EO and two extremities Ei and E ′i , a geodesic axis, noted
←→Ai , is defined as a pair of negatively collinear geodesics

#»Gi =
#»G
(
EO, Ei

)
,

and
#»

G ′i =
#»G
(
EO, E ′i

)
. It follows that a geodesic axis

←→Ai is itself a geodesic

between E ′i and Ei, which is guaranteed to pass through a given origin

EO. An example of geodesic axis is given in Figure 4.3 with the axis
←→A1
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(represented as a blue curve) between the BDTs E ′1 and E1, with origin B∗.
This notion will be instrumental in the definition of an orthogonal basis

in B, to constrain multiple geodesics to indeed pass through the origin

of the basis, while still allowing for an optimization of their extremities

(Section 4.3). Each geodesic axis
←→Ai is associated to a direction vector:

#»Vi =
#»Gi −

#»

G ′i =
#»G
(
E ′i , Ei

)
.

(v) BDT geodesic axis arc-length parametrization. By construction, any

BDT B located on an axis
←→Ai can be expressed with the following arc-

length parametrization
# »Ai(B) (with αi ∈ [0, 1]):

B = EO +
# »Ai(B) = EO + αi ×

#»Gi + (1− αi)×
#»

G ′i . (4.2)

This arc-length parametrization is the analog for the metric space B of the

Euclidean line parametrization used in PCA (Equation 4.1).

(vi) BDT geodesic axis projection. The projection B←→Ai
of an arbitrary BDT

B on the axis
←→Ai is its closest BDT on

←→Ai . It minimizes the following

projection energy:

B←→Ai
= arg min

B′∈←→Ai

(
WT2

(
B,B′

))
= arg min

B′∈←→Ai

(
WT2

(
B, EO +

# »Ai(B′)
))

. (4.3)

An example of projection is given in Figure 4.3, with the blue sphere

noted B̂1( f j), which is the projection on the axis
←→A1 (blue curve) of an

input BDT B( f j). The projection B←→Ai
of B on Ai will act as the analog, for

the metric space B, of the projection ∆i(pj) of a point pj along a line li in

the Euclidean PCA (Section 4.2.1).

(vii) BDT geodesic axis translation. Let
←→Ai and

←→Aj be two axes sharing

the same origin EO. The axis
←→Aj (B) is called the translation of

←→Aj along
←→Ai , with origin B ∈ ←→Ai if:

←→Aj (B) =
(
(B,B+

#»Gj), (B,B+
#»

G ′j)
)
. Intuitively,

a translated axis
←→Aj (B) is a BDT axis, which is parallel to the axis

←→Aj , and

which passes through a specific BDT B. In Figure 4.3, an example is given

with the axis
←→A2
(
B̂1( f j)

)
(black dashed curve), which is the translation of

the axis
←→A2 (black curve) at the BDT B̂1( f j) (blue sphere). This notion of

translated axis is needed when reconstructing a BDT given its coordinates

in the MT-PGA basis, as detailed next.

(viii) BDT geodesic orthogonal basis. We now introduce the notion of
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orthogonal basis in the metric space of merge trees B, which will be the

variable at the core of the constrained optimization problem for MT-PGA

formulation (Section 4.2.4). Let BB = {←→A1 ,
←→A2 , . . . ,

←→Ad′} be an orthogonal

basis of d′ geodesic axes (i.e. with pairwise orthogonal direction vectors

{ # »V1,
# »V2, . . . ,

#  »Vd′}), with origin EO. Let B̂1 be the projection of an arbitrary

BDT B on
←→A1 (B̂1 = B←→A1

= B←→A1(EO)
, e.g. blue sphere on

←→A1 , Figure 4.3,

noted B̂1( f j)). Now, let B̂2 be the projection of B on the translation of
←→A2

along
←→A1 , with origin B̂1: B̂2 is the BDT of the translated axis

←→A2(B̂1) which

is the closest to B (i.e. B̂2 = B←→A2(B̂1)
, e.g. dark blue sphere on

←→A2(B̂1) in

Figure 4.3, noted B̂( f j)).

By recursion, we can then define the translated projection of B for the

axis
←→Ad′ , noted B̂d′ , as B̂d′ = B←→Ad′ (B̂d′−1)

(with B̂0 = EO). Intuitively, the

translated projection B̂d′ of B is the closest BDT to B (dark blue sphere in

Figure 4.3), which can be obtained by a sequence of d′ geodesic displace-

ments (dark blue arrows in Figure 4.3) along the translated axes of the

orthogonal basis BB.

By using Equation 4.2, B̂d′ can be associated with a collection of arc-

length parameterizations { #  »A1(B̂1),
#  »A2(B̂2), . . . ,

#    »Ad′(B̂d′)}, s.t.:

B̂d′ = EO +
d′

∑
i=1

# »Ai(B̂i). (4.4)

B̂d′ can then be interpreted as the reconstruction of B (up to the di-

mension d′), given the basis BB: it is obtained by starting from the ori-

gin EO of the basis, and successively minimizing the projection energy

(Equation 5.13) along translated axes of BB, yielding a coordinate vector

α ∈ [0, 1]d
′

(Equation 4.2) which can be interpreted as the coordinates of B
in BB.

4.2.3 Concept Illustrations

We now present an illustration, on a toy example, of the low-level geomet-

rical notions formalized in our approach.

Figure 4.4(a): a BDT geodesic orthogonal basis with its origin B∗ (cyan

sphere), its BDT geodesic axis
←→A1 (blue, with its extremities E1 and E ′1

also in blue) and its axis
←→A2 (black, with its extremities E2 and E ′2 also

in black). Given an input BDT B( f j), its translated projection B̂1( f j) along
←→A1 is shown with a light blue sphere (on

←→A1). The translated axis of
←→A2 at B̂1( f j), noted

←→A2
(
B̂1( f j)

)
, is shown with a black transparent curve.

Finally, the reconstruction of B( f j) by this two-dimensional MT-PGA basis

is given by the grey sphere B̂( f j).
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Figure 4.4 – Illustration on a toy example of the geometrical notions formalized in our approach. We refer the reader to

Section 4.2.3 for a detailed description.



4.2. Formulation 91

All these concepts are illustrated in the birth-death space in the figures

(b) to (g). In these figures, B∗ is represented by the cyan point cloud

(origin of the basis, here: |B∗| = 4). Each (2× |B∗|)-dimensional geodesic

vector is represented in the birth-death space by a set of |B∗| 2D arrows,

modeling the individual branch-wise assignments (colored according to

the branch in B∗ they start from, see the inset merge tree, top left corner

of (a)). The coordinates of the arrows are reported, with matching colors,

in the adjacent array (the numbers report the actual values, but rounded

to one decimal after the point).

Figure 4.4(b): The geodesic
#»G
(
B∗, E1

)
is reported with colored arrows as

described above.

Figure 4.4(c): The geodesic
#»G
(
B∗, E ′1

)
is illustrated similarly.

#»G
(
B∗, E1

)
is reported in transparent, to illustrate the fact that the global collinear-

ity of two (2× |B∗|)-dimensional geodesic vectors translates into a local

collinearity of the individual 2D assignment vectors in the birth-death

space.

Figure 4.4(d): The geodesic axis
←→A1 is reported with colored double ar-

rows, along with their coordinates (arrays).

Figure 4.4(e): The geodesic axis
←→A2 is shown similarly.

←→A1 is reported in

transparent, to illustrate the fact that the global orthogonality between the

(2× |B∗|)-dimensional direction vectors
# »V1 =

# »G1 −
# »

G ′1 and
# »V2 =

# »G2 −
# »

G ′2
does not necessarily translate into a local orthogonality between the in-

dividual 2D assignment vectors in the birth-death space. This can be ex-

plained by the fact that a 2D space can only capture orthogonality between

2 directions, not 2 × |B∗|. Alternatively, the geodesic axes
←→A1 and

←→A2 ,

when shown in the birth-death space, can be interpreted as 2-dimensional

projections of orthogonal (2× |B∗|)-dimensional direction vectors.

Figure 4.4(f): The projection B̂1( f j) (light blue sphere on the segments) is

the BDT on
←→A1 which minimizes its distance to B( f j).

Figure 4.4(g): The translated axis
←→A2
(
B̂1( f j)

)
is shown with colored dou-

ble arrows. The axis
←→A2 is shown in transparent (black).

4.2.4 MT-PGA Formulation

Now that the above low-level geometrical tools have been introduced for

the Wasserstein metric space B, we can formulate the MT-PGA by direct

analogy to the classical PCA (Section 4.2.1).

Given a set SB = {B( f1), . . . ,B( fN)} of input BDTs, let B∗ be their

Fréchet mean (Equation 3.24). Then, similarly to PCA, MT-PGA defines
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an orthogonal basis BB = {←→A1 ,
←→A2 , . . . ,

←−−−→A2×|B∗|} of geodesic axes
←→Ai (i ∈

{1, . . . , 2× |B∗|}) s.t.:

1. the origin EO of BB coincides with the Fréchet mean B∗ of SB ,

2. the axis
←→Ai is orthogonal to all axes

←→Ai′ (i′ ∈ {1, . . . , i − 1}) and it

minimizes its average squared Wasserstein distance to SB .

Then, BB can be formulated as an orthogonal basis which minimizes the

following (non-convex) fitting energy (with d′ = 2× |B∗| in general):

EWT2
(BB) =

N

∑
j=1

WT2
(
B( f j),B∗ +

d′

∑
i=1

# »Ai
(
B̂i( f j)

))2
. (4.5)

The above equation is a direct analogy to the classical PCA (Equa-

tion 4.1): the L2 norm is replaced by the Wasserstein distance WT2 , the

arithmetic mean ob by B∗ and the term α
j
i

#»

bi by
# »Ai
(
B̂i( f j)

)
.

4.3 Algorithm

This section presents our novel algorithm, based on the constrained mini-

mization of Equation 4.5, for the estimation of an orthogonal basis BB for

the Principal Geodesic Analysis of merge trees.

4.3.1 Overview

Algorithm 1 provides an overview of our approach. Our algorithm takes

an ensemble SB of BDTs as an input and provides three outputs: (i)

the basis origin B∗, (ii) its dmax geodesic axes {←→A1 ,
←→A2 , . . . ,

←−→Admax} (where

1 ≤ dmax ≤ 2 × |B∗| is an input parameter) and (iii) the coordinates

αj ∈ [0, 1]dmax of the input BDTs in BB (Equation 4.2, with j ∈ {1, 2, . . . , N}).
First, the origin of the basis BB is computed as the Wasserstein barycen-

ter B∗ of SB (line 1). This is done with an iterative algorithm (Chapter 3),

which initializes B∗ at the BDT in SB minimizing Equation 3.24, and which

further minimizes Equation 3.24 by iteratively alternating assignment and

update phases (see Chapter 3). After this optimization has completed,

only the N1 most persistent branches are kept in B∗, where N1 is an input

parameter controlling the memory footprint of the basis (see Section 5.3.7).

Next, the MT-PGA basis is computed by adapting the iterative strategy

described in the case of PCA (Section 4.2.1). In particular, geodesic axes

are computed one dimension at a time (starting with d′ = 1 and finishing

with d′ = dmax, for loop, lines 2 to 16).

In particular, at each step d′:
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1. The geodesics
#  »Gd′ and

#  »

G ′d′ defining the axis
←→Ad′ are optimized in or-

der to minimize Equation 4.5 (line 8). This optimization (described

in Section 4.3.2 and illustrated in Figure 4.5) involves the translated

projection B̂d′( f j) of each input BDT B( f j) (line 6), providing an es-

timation of its coordinate α
j
d′ (Equation 4.2).

2. The axis
←→Ad′ is updated into a valid solution (as described in Sec-

tion 4.3.3 and illustrated in Figure 4.6), by enforcing each constraint

one after the other (lines 11 to 13).

This alternated procedure optimization/constraint is iterated until

EWT2
(BB) does not evolve significantly anymore (see Section 4.3.2). Once

this is achieved, the current axis
←→Ad′ is considered as finalized and d′ is

incremented until
←−→Admax is finalized.

Algorithm 1 Merge Tree Principal Geodesic Analysis (MT-PGA)
Input: Set of BDTs SB = {B( f1), . . . ,B( fN)}.
Output1: Basis origin B∗;
Output2: Basis geodesic axes BB = {←→A1 ,

←→A2 , . . . ,
←−→Admax};

Output3: Coordinates αj ∈ [0, 1]dmax of the input BDTs in BB

(with j ∈ {1, 2, . . . , N}).

1: B∗ ←WassersteinBarycenter(SB);
2: for d′ ∈ {1, 2, . . . , dmax} do

3:
←→Ad′ ←InitializeGeodesicAxis(SB ,B∗, BB);

4: while EWT2
(BB) decreases do

5: // Optimize the current geodesic axis
←→Ad′ (Section 4.3.2)

6: α
j∈{1,2,...N}
d′ ←ProjectTrees(SB ,B∗, BB, αj∈{1,2,...N});

7: EWT2
(BB)←EvaluateFittingEnergy(SB ,B∗, BB, αj∈{1,2,...N});

8:
←→Ad′ ←OptimizeFittingEnergy(SB ,B∗, BB, αj∈{1,2,...N});

9: // Enforce the constaints (Section 4.3.3)

10: while
←→Ad′ evolves do

11:
←→Ad′ ←EnforceGeodesics(B∗,←→Ad′);

12:
←→Ad′ ←EnforceNegativeCollinearity(

←→Ad′);

13:
←→Ad′ ←EnforceOrthogonality(BB,

←→Ad′);

14: end while

15: end while

16: end for
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4.3.2 Geodesic Axis Optimization

This section describes the optimization of a single axis
←→Ad′ .

First, the geodesic
#  »Gd′ of

←→Ad′ is initialized by considering as its extrem-

ity Ed′ the input BDT in SB which maximizes its Wasserstein distance to all

the previous geodesic axes
←→Ad′′ , ∀d′′ ∈ {1, . . . d′ − 1} (to B∗ when d′ = 1).

The second geodesic
#  »

G ′d′ is initialized at − #  »Gd′ .

Next, both
#  »Gd′ and

#  »

G ′d′ are optimized, to minimize Equation 4.5. This

is achieved with an iterative algorithm (Algorithm 1, while loop, line 4)

which, similarly to the minimization of the Fréchet energy (Chapter 3),

alternates an (i) Assignment and an (ii) Update phase. Intuitively, the (i) As-

signment phase will compute geodesics (dashed blue curves, Figure 4.5a)

between the input BDTs (white spheres, Figure 4.5a) and the axis to opti-

mize (plain blue curve, Figure 4.5a), while the (ii) Update phase will op-

timize freely the axis under these optimal assignments. After the (ii) Up-

date, the initial assignments may no longer be optimal (since the axis has

changed) and the Assignment/Update sequence needs to be iterated again,

as detailed next.

The Assignment phase (i) computes a geodesic between each input BDT

B(j) and its translated projection B̂d′( f j) (Figure 4.5). In particular, these

translated projections (Algorithm 1, line 6) are estimated in practice by

sampling the translated axis
←→Ad′
(
B̂d′−1( f j)

)
along N2 evenly spaced sam-

ples and by selecting, for each B( f j), the sample B̂d′( f j) which minimizes

Equation 5.13.

Next, the Update phase (ii) consists in optimizing
#  »Gd′ and

#  »

G ′d′ to min-

imize Equation 4.5 under the assignments computed by the Assignment

phase (i). As detailed just after , for fixed assignments, the fitting energy

Figure 4.5 – Computing the translated projection of each input BDT B( f j) (white

sphere). For the first axis (a), N2 samples evenly spaced on
←→A1 are considered (blue

spheres). Then, for each B( f j), the sample which minimizes its WT2 distance to B( f j)

is selected as B̂1( f j) (dashes). Next (b), the axis
←→A2 is translated to B̂1( f j) along

←→A1

(arrow) yielding the translated axis
←→A2
(
B̂1( f j)

)
, which is also evenly sampled. The

sample of
←→A2
(
B̂1( f j)

)
minimizing its WT2 distance to B( f j) is selected as B̂2( f j).
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EWT2
is convex with the variables

#  »Gd′ and
#  »

G ′d′ . We then provide the ana-

lytic expression of the gradient of this energy and we derive the analytic

expressions of
#  »Gd′ and

#  »

G ′d′ which minimize Equation 4.5.

Given the Wasserstein barycenter B∗ of the input set of BDTs SB =

{B( f1), . . . ,B( fN)} as well as an initialization of the d′-th geodesic axis

of BB, noted
←→Ad′ , we want to update

←→Ad′ in order to decrease the fitting

energy associated to BB (Equation 4.5).

Similarly to previous optimization strategies for the Fréchet energy

(such as [TMMH14, VBT20] or in Chapter 3), our approach consists in

alternating phases of (i) Assignments (between the input BDTs and their

projections along translations of
←→Ad′ , cf. Equation 5.13) and (ii) Updates (of

the axis
←→Ad′).

Thus, at the Update phase (ii), the assignment ϕ′d′
j between each

input BDT B( f j) and its projection B̂d′( f j) on the the translated axis
←→Ad′
(
B̂d′−1( f j)

)
is constant. It follows that each branch b∗ ∈ B∗ can be

considered independently for the minimization of Equation 5.13. In par-

ticular, let
(
b∗ + ∑d′

i=1(1 − α
j
i)

#»gi + α
j
i

#»

g′i
)

be the branch assigned to b∗ in

B̂d′( f j), with #»gi and
#»

g′i being two 2D vectors in the birth/death space (i.e.

the entries of
#»Gi and

#»

G ′i corresponding to the branch b∗ of B∗). Then, the

individual fitting energy associated to b∗, i.e. its contribution to Equa-

tion 5.13, can be expressed as:

Eb∗(
#  »gd′ ,

#  »

g′d′) =
N

∑
j=1

d2
(
bj, b∗ +

d′

∑
i=1

(1− α
j
i)

#»gi + α
j
i

#»

g′i
)2, (4.6)

where bj stands for the branch in B( f j) assigned to b∗ and d2 stands for the

L2 norm in the 2D birth/death space (i.e. the ground distance involved in

WT2 , see Equation 2.2). Note that the usage of the L2 norm implies that

Eb∗ is convex. Our goal at this stage is to find the two vectors #  »gd′ and
#  »

g′d′
which minimize Equation 4.6.

Equation 4.6 can be further detailed as follows, where gix and giy stand

for the X-Y coordinates of the vector #»gi in the birth/death plane:

Eb∗(
#  »gd′ ,

#  »

g′d′) =
N

∑
j=1

(
bjx −

(
b∗x +

d′

∑
i=1

(1− α
j
i)× gix + α

j
i × g′ix

))2

+
(

bjy −
(
b∗y +

d′

∑
i=1

(1− α
j
i)× giy + α

j
i × g′iy

))2
.

(4.7)

In the following, we derive the gradient of the above convex energy. In

particular, we detail the derivation for the X coordinate only (the deriva-
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tion along the Y coordinate being identical):

∂Eb∗(
#  »gd′ ,

#  »

g′d′)
∂gd′x

= 2
N

∑
j=1

(1− α
j
d′)
(

bjx −
(
b∗x +

d′

∑
i=1

(1− α
j
i)× gix + α

j
i × g′ix

))
∂Eb∗(

#  »gd′ ,
#  »

g′d′)
∂g′d′x

= 2
N

∑
j=1

α
j
d′

(
bjx −

(
b∗x +

d′

∑
i=1

(1− α
j
i)× gix + α

j
i × g′ix

))
.

To minimize Equation 4.7, we aim to find the values of gd′x and g′d′x for

which the above partial derivatives equal zero. This yields the following

linear system of two equations (with two unknowns, gd′x and g′d′x):

N

∑
j=1

(1− α
j
d′)
(

bjx −
(
b∗x +

d′

∑
i=1

(1− α
j
i)× gix + α

j
i × g′ix

))
= 0

N

∑
j=1

α
j
d′

(
bjx −

(
b∗x +

d′

∑
i=1

(1− α
j
i)× gix + α

j
i × g′ix

))
= 0.

(4.8)

Given the above system, we aim next at expressing gd′x as a function

of g′d′x. To simplify notations, we introduce the term b∗d′x as follows:

b∗d′x := b∗x +
d′−1

∑
i=1

(1− α
j
i)× gix + α

j
i × g′ix.

Then, the first line of Equation 4.8 can be re-written as:

N

∑
j=1

(1− α
j
d′)
(

bjx −
(
b∗d′x + (1− α

j
d′)× gd′x + α

j
d′ × g′d′x

))
= 0.

Then, it follows that:

gd′x =
∑N

j=1(1− α
j
d′)
(

bjx −
(
b∗d′x + α

j
d′ × g′d′x

))
∑N

j=1(1− α
j
d′)

2
. (4.9)

Now, we apply the same reasoning with the second line of Equa-

tion 4.8, yielding the following expression of g′d′x:

g′d′x =
∑N

j=1 α
j
d′

(
bjx −

(
b∗d′x + (1− α

j
d′)× gd′x

))
∑N

j=1 (α
j
d′)

2
. (4.10)

At this stage, one can notice that the expression of g′d′x is itself a func-

tion of gd′x. Thus, we insert the expression of g′d′x (Equation 4.10) into that

of gd′x (Equation 4.9), which results eventually in the following expression

(we omit the detailed, intermediate steps):

gd′x =

∑N
j=1(1− α

j
d′)

(
bjx − b∗d′x − α

j
d′

∑N
k=1 αk

d′(bkx − b∗d′x)

∑N
k=1(α

k
d′)

2

)

∑N
j=1(1− α

j
d′)

2 + ∑N
j=1(1− α

j
d′)α

j
d′

∑N
k=1 αk

d′
(
− (1− αk

d′)
)

∑N
k=1(α

k
d′)

2

. (4.11)
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Finally, we can insert the expression of gd′x (Equation 4.9) into the origi-

nal expression of g′d′x (Equation 4.10), resulting in the following expression

(again, we omit the detailed, intermediate steps):

g′d′x =

∑N
j=1 α

j
d′

(
bjx − b∗d′x − (1− α

j
d′)

∑N
k=1(1− αk

d′)(bkx − b∗d′x)

∑N
k=1(1− αk

d′)
2

)

∑N
j=1(α

j
d′)

2 + ∑N
j=1 α

j
d′(1− α

j
d′)

∑N
k=1(1− αk

d′)
(
− αk

d′
)

∑N
k=1(1− αk

d′)
2

. (4.12)

Overall, Equation 4.11 and Equation 4.12 provide the expression of

the X-coordinate of the vectors #  »gd′ and
#  »

g′d′ which minimize the individual

fitting energy (Equation 4.7). The same reasoning (not detailed here) can

be applied identically to retrieve the Y-coordinate of #  »gd′ and
#  »

g′d′ .

Then, the entire vectors
#  »Gd′ and

#  »

G ′d′ (defining
#    »Ad′
(
B̂d′( f j)

)
) which min-

imize Equation 5.13 under the current assignments can be updated simi-

larly, by iterating the above computation for all the branches b∗ of B∗.
This overall Assignment/Update sequence is then iterated (Algorithm 1,

while loop, line 4). Each iteration decreases EWT2
constructively: while

the Update phase (ii) minimizes it under the current assignment, the next

Assignment phase (i) further improves (by construction) the assignments,

hence decreasing EWT2
overall. In our implementation, the algorithm stops

when the fitting energy has decreased by less than 1% between two con-

secutive iterations.

4.3.3 Constraints

The previous section described an algorithm for optimizing the geodesic

axis
←→Ad′ , in order to minimize the fitting energy EWT2

(Equation 4.5). How-

ever, this algorithm did not consider yet key constraints present in the def-

inition of MT-PGA (Section 4.2.2), such as axis orthogonality. We describe

now our strategy for extending the above algorithm with a succession of

constraint enforcements.

Geodesic Enforcement

After the axis
←→Ad′ has been optimized (Section 4.3.2) to minimize the fit-

ting energy EWT2
(Equation 4.5), its associated vectors

#  »Gd′ ∈ R2×|B∗| and
#  »

G ′d′ ∈ R2×|B∗| may represent displacements in the 2D birth/death space

which are no longer geodesics in B (as illustrated in Figure 4.6a with the

dashed arrows). Concretely, this situation occurs if the assignment de-

scribed by the (optimized) vector
#  »Gd′ between the barycenter B∗ and the
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Figure 4.6 – Constraint enforcements: (a) Geodesic enforcement guarantees that the

vector
# »G1 describes an assignment which minimizes Equation 3.4; (b) Collinearity en-

forcement constructively aligns
# »G1 and

# »

G ′1; (c) Orthogonality enforcement updates
# »G2

and
# »

G ′2 via Gram-Schmidt orthogonalization.

vector extremity Ed′ is no longer optimal with regard to WT2 (Equation 3.4),

as
#  »Gd′ has been optimized freely when minimizing EWT2

. This can be eas-

ily corrected by re-computing the optimal assignment between B∗ and Ed′ ,

yielding an updated vector
#  »Gd′ , now describing a valid geodesic between

B∗ and Ed′ . In Figure 4.6a, this is illustrated by the switch from the dashed

arrows to the plain blue arrows. The same correction is applied to second

vector of the axis,
#  »

G ′d′ .

Negative Collinearity Enforcement

Up to now, the two geodesics
#  »Gd′ and

#  »

G ′d′ of the axis
←→Ad′ have been op-

timized independently. Then, they may not be negatively collinear and

thus, they may not describe a valid geodesic axis, as defined in Sec-

tion 4.2.2. Let β′ = || #  »Gd′ ||/(||
#  »Gd′ || + ||

#  »

G ′d′ ||) be the ratio describing the

relative norm of
#  »Gd′ with regard to

←→Ad′ . Negative collinearity is now

constructively enforced by updating
#  »Gd′ and

#  »

G ′d′ (Figure 4.6b) such that
#  »Gd′ ← β′× #  »Vd′ and

#  »

G ′d′ ← −(1− β′)× #  »Vd′ , where
#  »Vd′ is the direction vector

of
←→Ad′ (Section 4.2.2,

#  »Vd′ =
#  »Gd′ −

#  »

G ′d′).

Orthogonality Enforcement

We now describe the enforcement of the orthogonality of
←→Ad′ to all pre-

vious axes in the basis. In particular, given the direction vector
#  »Vd′ =

#  »Gd′ −
#  »

G ′d′ , we want to update
#  »Gd′ and

#  »

G ′d′ , such that
#  »Vd′ ·

#   »Vd′′ = 0, for all

d′′ ∈ {1, 2, . . . , d′ − 1}. Let P #    »Vd′′
(

#  »Vd′) =
(
(

#  »Vd′ ·
#   »Vd′′)/(

#   »Vd′′ ·
#   »Vd′′)

)
× #   »Vd′′ be

the projection of
#  »Vd′ onto the direction spanned by

#   »Vd′′ . The orthogonality
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of
#  »Vd′ to all vectors

#   »Vd′′ is enforced (Figure 4.6c) by updating
#  »Vd′ as follows:

#  »Vd′ ←
#  »Vd′ −∑d′−1

d′′=1 P #    »Vd′′
(

#  »Vd′).

Note that the above constraints may go against each other: e.g. after or-

thogonality enforcement (iii),
#  »Gd′ may no longer represent a valid geodesic

(i). Thus, we iterate the above succession of constraint enforcements, un-

til
←→Ad′ no longer evolves significantly (Algorithm 1, line 10). In practice,

using a constant number of iterations (specifically 4) is sufficient to obtain

satisfactory results (see Section 4.5.3 for further details regarding conver-

gence).

4.3.4 From BDTs to MTs

Given an MT-PGA basis, for an arbitrary coordinate vector α ∈ [0, 1]dmax ,

the resulting BDT B̂ can be reconstructed (Section 4.2.2) by considering a

BDT isomorphic to B∗ such that:

B̂ = B̂dmax = B∗ +
dmax

∑
i=1

αi ×
#»Gi + (1− αi)×

#»

G ′i . (4.13)

Applying the above computation embeds each branch b of B̂ as a

point (xb, yb) in the 2D birth/death space. Since we consider that

the input BDTs have been pre-normalized (Section 3.4.2), a valid MT

T̂ can in principle be reverted from B̂, by recursively reverting Equa-

tion 3.23, assuming that [xb, yb] ⊆ [0, 1] (to enforce the nesting prop-

erty of BDTs, Section 2.5). However, the latter assumption is not ex-

plicitly enforced in our constrained optimization (Section 4.3.2 and Sec-

tion 4.3.3). Thus, in our entire framework (optimization included),

when re-constructing a BDT (Equation 4.13), for each branch b∗ ∈
B∗, the corresponding direction vector #»vi = #»gi −

#»

g′i (with #»gi and
#»

g′i
being the entries of

#»Gi and
#»

G ′i corresponding

to the branch b∗) is temporarily scaled down

if needed (inset, right) by locally renormal-

izing αi, to guarantee that the extremities ei

(αi = 1) and e′i (αi = 0) describe valid normal-

ized birth/death locations (i.e. xei < yei and

[xei , yei ] ⊆ [0, 1]).

4.3.5 Computational Parameters

As described in Chapter 3, the Wasserstein metric WT2 is subject to three

parameters (ϵ1, ϵ2 and ϵ3, described in detail in Section B.1), for which
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we use the recommended default values (Section B.1). Otherwise, when

switching ϵ1 to 1, WT2 becomes equivalent to WD2 (see Chapter 3 or Sec-

tion B.1) and our framework computes then a PGA basis of extremum

persistence diagrams (PD-PGA for short).

Our algorithm itself (Algorithm 1) is subject to two parameters. (i) N1

controls the size of B∗, and hence the memory footprint of the MT-PGA

basis. In practice, we set N1 to a conservative value: 20% of the total

number of branches in the ensemble (∑N
j=1 |B( f j)|). (ii) N2 controls the

number of samples on each geodesic axis, to balance accuracy and speed.

In practice, we set N2 to 16.

4.4 Applications

This section illustrates the utility of our framework in concrete visualiza-

tion tasks: data reduction and dimensionality reduction.

4.4.1 Data Reduction

Like any other data representation, merge trees can benefit from lossy

compression, to facilitate their storage or transfer. This can be particularly

useful in scenarios where the scalar fields of the ensemble cannot all be

stored permanently (because of their size or the induced IO bottleneck)

but are represented instead individually by a topological signature (e.g. a

persistence diagram or a merge tree), yielding an ensemble of signatures.

This can be the case for instance during large data acquisition campaigns,

Figure 4.7 – Tracking features (the five most persistent maxima, spheres) in time-varying

(from left to right) 2D data (ion density during universe formation [Org04]). The com-

puted tracking from Chapter 3 is identical, when using the input original merge trees

(inset, left) or their versions compressed by MT-PGA (inset, right), which are highly sim-

ilar visually. Here, since the input ensemble has few, small BDTs, the default reduction

parameters (dmax = 3 and N1 = 20%) resulted in a modest compression factor (5.12).

The reported relative reconstruction error (right) is given by the distance WT2 between a

tree and its reconstruction, divided by the maximum pairwise distance WT2 observed in

the input ensemble.
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Figure 4.8 – Topological clustering of the 40 members of a cosmology ensemble [Org04]

(one member is represented for each cluster). The computed clustering (Chapter 3) is

identical, when using the input original merge trees (bottom left inset) or their versions

compressed by MT-PGA (bottom right inset). The optimal assignment between the left

and right trees is visualized by the matching colors and the corresponding BDTs are re-

ported at the top. Since this ensemble has many members, the default reduction parame-

ters (dmax = 3 and N1 = 20%) resulted in an important compression factor (19.27). This

compression still provided compressed trees (bottom right inset) that are visually similar

to the input trees (bottom left inset): the number of prominent features (thick cylinders)

and their persistence (heights of the cylinders of matching color) are well preserved. This

is confirmed with the reconstructed BDTs (top right inset) which are mostly isomorphic to

the input BDTs (thick cylinders of matching color). The reported relative reconstruction

error (bottom) is given by the distance WT2 between a tree and its reconstruction, divided

by the maximum pairwise distance WT2 observed in the input ensemble.

or large-scale simulations, where a topological signature can be typically

computed in-situ [ABG+
15] to represent each time step [BNP+

21]. In this

scenario, lossy compression is useful to facilitate the manipulation (i.e.

storage and transfer) of the resulting ensemble of merge trees. In Chap-

ter 3 we have investigated the lossy compression of a temporal sequence

of merge trees. In this section, we extend this work to arbitrary ensembles

of merge trees thanks to MT-PGA.

Given its coordinates αj ∈ [0, 1]dmax , each BDT B( f j) of SB can be reli-

ably estimated with Equation 4.13. Thus, we present now an application to

data reduction where the input ensemble of BDTs is compressed, by only

storing to disk: (i) the origin B∗ of BB, (ii) its axes {←→A1 ,
←→A2 , . . . ,

←−→Admax} and

(iii) the N BDT coordinates αj ∈ [0, 1]dmax . The compression quality can

be controlled with two input parameters (Section 4.3.1). (i) dmax controls

the number of axes (and thus the ability of the basis to capture mild vari-

abilities). (ii) N1 controls the size of B∗ (and thus the ability of the basis

to capture small features). The reconstruction error (Equation 4.5) will
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be minimized for large values of both parameters, while the compression

factor will be maximized for low values. In our reduction experiments,

we set dmax to 3 and N1 to its default value (Section 5.3.7). Figure 4.7 and

Figure 4.8 show two examples of visualization applications (feature track-

ing and ensemble clustering, replicated from Chapter 3) where the BDTs

compressed with the above strategy (B̂( f j)) have been used as an input. In

both cases, the output is identical to the outcome obtained with the orig-

inal BDTs. This shows the viability of our reconstructed BDTs (and MTs)

and demonstrates the utility of our reduction scheme.

Table 4.1 reports the compression factors and average relative recon-

struction error for all our test ensembles. In particular, for each input BDT

B( fi), we compute its reconstruction error via the WT2 distance to its re-

construction B̂( fi). In order to become comparable across ensembles, this

distance is then divided by the maximum WT2 distance observed among

two input BDTs in the ensemble. Finally, this relative reconstruction error

is averaged over all the BDTs of the input ensemble.

This table shows that our framework results in significant compression

factors (9 or above) for the largest ensembles, i.e. the ensembles counting

the most members and for which the BDTs are the largest (i.e. Dark matter,

Sea Surface Height). On the contrary, modest compression factors tend

to be obtained for the smallest ensembles, counting few members and

few features. The average relative reconstruction error seems acceptable

overall: 0.13 and 0.17 on average for PD-PGA and MT-PGA respectively.

Table 4.1 – Compression factor and average relative reconstruction error of our algorithm

for PD-PGA and MT-PGA (for dmax = 3 and N1 = 20).

Dataset N |B| PD-PGA MT-PGA

Factor Error Factor Error

Asteroid Impact (3D) 7 1,295 2.97 0.07 4.84 0.22

Cloud processes (2D) 12 1,209 5.94 0.19 7.39 0.01

Viscous fingering (3D) 15 118 2.23 0.13 4.71 0.02

Dark matter (3D) 40 2,592 10.00 0.04 19.27 0.04

Volcanic eruptions (2D) 12 811 9.99 0.12 4.83 0.04

Ionization front (2D) 16 135 2.56 0.14 5.12 0.40

Ionization front (3D) 16 763 3.27 0.17 4.85 0.46

Earthquake (3D) 12 1,203 1.42 0.18 2.19 0.33

Isabel (3D) 12 1,338 5.49 0.27 9.25 0.05

Starting Vortex (2D) 12 124 1.76 0.07 4.42 0.01

Sea Surface Height (2D) 48 1,787 19.59 0.18 9.48 0.48

Vortex Street (2D) 45 23 1.86 0.04 11.84 0.02



4.4. Applications 103

Finally, note that for each ensemble, the merge tree based clustering

(Chapter 3) computed from the input BDTs is strictly identical to the clus-

tering computed from the reconstructed BDTs. This confirms the viability

of our reconstructed BDTs, and their usability for typical visualization and

analysis tasks.

4.4.2 Dimensionality Reduction

The MT-PGA basis BB can also be used to generate 2D layouts of the

ensemble, for its global visual inspection. This is achieved by embed-

ding each input BDT B( f j) as a point in the 2D plane, given its first

two coordinates in BB. To prevent an artificial anisotropic distortion

(αj ∈ [0, 1]2), we scale the coordinates of each BDT, to account for the

variation in length of the axes, and we embed each BDT at coordinates(
α

j
1 ×WT2 (E1, E ′1), α

j
2 ×WT2 (E2, E ′2)

)
. This results in a summarization view

of the overall ensemble, which groups together BDTs which are close

(given the metric WT2 ) and which exhibit a similar variability with regard

to B∗. Note that, given an arbitrary point of the 2D layout, its BDT (and

MT) can be efficiently reconstructed with Equation 4.13. This enables in-

teractive navigations within the ensemble (Figure 4.1f). We augment our

planar layouts with the following two improvements, to further character-

ize the global and local variability in the ensemble.

(i) Principal geodesic surface. To visually convey the curved (i.e. non-

Euclidean) nature of the Wasserstein metric space B, we introduce a 3D

embedding of our planar layouts, which we call Principal Geodesic Sur-

face (PGS). First, our 2D layout is sampled along a Nx × Ny regular grid

GB (in practice, Nx = Ny = N2). For each vertex of GB, a BDT can be

reconstructed (Equation 4.13), enabling the computation of a distance ma-

trix DGB
, where DGB

(i, j) is the WT2 distance between the vertices i and j

of GB. Then, GB is embedded in 3D by multidimensional scaling [KW78]

of DGB
. The resulting PGS provides the same visual information as the

planar layout, but in the form of a surface in 3D, parameterized by α1 and

α2 (Figure 4.3), which conveys visually the curved nature of B.

(ii) Persistence correlation view. As detailed after, we compute the cor-

relation ρ(pi, αk) between the coordinate αk and the persistence of the ith

branch (i.e. the branch in the input BDTs mapped to the ith branch of B∗

given the optimal assignment induced by WT2 , Equation 3.4). Then, the ith
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Figure 4.9 – Feature variability interpretation with Persistence Correlation Views (PCV) on the Ionization (3D) ensemble.

(a): Four members of the ensemble (one per ground-truth class). (b): Principal Geodesic Surface (PGS) and its planar layout,

computed by MT-PGA (sphere color: ground-truth classes). (c): In the correlation view, several features (i.e. branches) are

located near the disk boundary, indicating high correlations. The dark green features are highly correlated with the direction

(0, α2), given their location (near the black axis, upper half). Back in the data, this indicates that the corresponding features

(basis of the ionization front, green spheres in the data and merge tree insets) will be the most persistent for the ensemble

members with high α2 values (clusters 0 and 1, (b)). Light green features in the PCV (upper left quadrant , (c)) are highly

correlated with the direction (−α1, α2): these features (front extremities, insets) will be the most persistent in the top left

corner of the PGS ((b), cluster 0). This is confirmed visually in the data (zoom insets), where the maxima are represented by

spheres of matching color (the radius denotes persistence).

branch of the barycenter BDT B∗ can be embedded in a Persistence Corre-

lation View (PCV), by placing an arrow between the origin and the point

(ρpi ,α1 , ρpi ,α2). This enables a local interpretation of the feature variability

within the ensemble. Specifically, it enables the visual identification of the

features whose persistence is strongly correlated with a given direction in

the MT-PGA basis. Such features are located on the disk boundary of the

correlation view (largest arrows in Figure 4.1, Figure 4.9, Figure 4.10), and

they are the most responsible for the variability in the ensemble. For each

of these features, their matching to the origin B∗ of the MT-PGA basis is

encoded with the color map, which enables their direct inspection in the

data. We now describe the computation of the correlation between the

persistence of the ith feature of an input BDT B( f j) and its coordinate α
j
k

along the geodesic axis
←→Ak . It is derived from the seminal Pearson’s corre-

lation [Pea95], applied on the above terms (made available by our frame-

work). Let P be an (N1 × N)-matrix, such that the entry P(i, j) denotes

the topological persistence, in the jth input BDT, of the branch bj ∈ B( f j)

mapped to the ith most persistent branch of B∗ given the optimal assign-

ment induced by WT2 (Equation 3.4). Next, let A be a (dmax × N)-matrix,

such that then entry A(k, j) denotes the coordinate α
j
k of the BDT B( f j)

along the axis
←→Ak .

In the following, we aim at assessing how much the persistence of the

branches in B( f j) is correlated with the coordinate α
j
k. Let ρpi ,αk be the
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Figure 4.10 – Feature variability interpretation for the Isabel ensemble, with PD-PGA.

In the PCV (top left), the blue feature (eye of the hurricane) is highly correlated with the

direction (−α1, 0), which indicates that its persistence will be stronger for the leftmost

points in the PGS (clusters 0 and 1) and weaker for the rightmost points (cluster 2). In

other words, the winds in the eye of the hurricane are significantly weaker in the cluster

2 (landfall phase of the hurricane). On the contrary, the other highly correlated features

(right half of the PCV) are correlated with the direction (α1, 0): their persistence will be

stronger for the rightmost points (cluster 2). This is confirmed visually when inspecting

the corresponding features in the data and the input diagrams (bottom). Similarly to MT-

PGA, PD-PGA enables a data reduction (compression factor: 5.49), while guaranteeing

visually similar reconstructed diagrams (D̂( f j)).

correlation between the persistence pi (ith line of P) and the coordinate αk

(kth line of A). It is given by the following expression, where pi and αk are

the average values for the the ith line of P and the kth line of A, and where

σpi and σαk stand for their standard deviation:

ρpi ,αk =
∑N

j=1
(
P(i, j)− pi

)
×
(
A(k, j)− αk

)
N × σpi × σαk

.

Together, our Principal Geodesic Surface (PGS) coupled with our Persis-

tence Correlation View (PCV) enable both a global and local inspection

of the feature variability in the ensemble. In particular, in the example of

Figure 4.1, our visualization indicates overall that the global maximum of

the seismic wave (largest branch in the merge trees, purple, Figure 4.1c)

is mostly correlated with the direction (−α1, 0) in the PCV (Figure 4.1d),

and therefore, mostly prominent in the cluster 1 (located on the left of

the PGS, Figure 4.1b, for the lowest α1 values). In contrast, the other fea-

tures (blue, cyan and dark blue branches) are less correlated with this

direction (shorter arrows in the PCV Figure 4.1d), which indicates that

they are slightly less variable through this direction: their persistence de-
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creases less quickly than the global maximum when transitioning from

cluster 1 to 2 and 3 (dark red, orange and pink spheres respectively in

the PGS Figure 4.1g). This indicates that the initial energy of the seismic

wave (represented by the global maximum) quickly spreads into multiple

wavefronts (spheres of matching colors in the data, Figure 4.1a), whose

individual energy decreases through time more slowly than the global

maximum (each cluster represents a different temporal phase in the sim-

ulation, from top to bottom in Figure 4.1a). Figure 4.9 and Figure 4.10

present a similar analysis and we refer the reader to the detailed captions

for specific interpretations. Note that for Figure 4.10, the features do not

exhibit a clear global structure and the persistence diagram can be used

instead of the merge tree.

4.5 Results

This section presents experimental results obtained on a computer with

two Xeon CPUs (3.2 GHz, 2x10 cores, 96GB of RAM). The input merge

trees were computed with FTM [GFJT19a] and pre-processed to discard

noisy features (persistence simplification threshold: 0.25% of the data

range). We implemented our approach in C++ (with the OpenMP task

runtime), as modules for TTK [TFL+
17, BMBF+

19]. Experiments were per-

formed on the benchmark of public ensembles described in Appendix A,

which includes a variety of simulated and acquired 2D and 3D ensembles

extracted from previous work and past SciVis contests [Org04].

4.5.1 Time Performance

Barycenters and geodesics are computed with the approach of Chap-

ter 3, which implements fine-grain task-based shared-memory parallelism.

Specifically, during axis projection, N×N2 geodesics need to be computed

(Section 4.3.2), each geodesic requiring typically O(|B|2) steps in practice,

where |B| is the size of the input BDTs. In practice, this is the most expen-

sive part of our algorithm. These geodesics are computed concurrently

(by submitting each geodesic to the task pool). In comparison, the eval-

uations of the numerical expressions (Algorithm 1, lines 7, 8, 12 and 13)

have a nearly negligible cost. Table 4.2 evaluates the time performance of

our framework for persistence diagrams (PD-PGA) and merge trees (MT-

PGA), for dmax = 2. In sequential mode, the running time is indeed a

function of the size of the ensemble (N) and the size of trees (|B|). It is
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Table 4.2 – Running times (in seconds) of our algorithm for PD-PGA and MT-PGA

computation (for dmax = 2, first sequential, then with 20 cores).

Dataset N |B| PD-PGA MT-PGA

1 c. 20 c. Speedup 1 c. 20 c. Speedup

Asteroid Impact (3D) 7 1,295 1,392.17 147.40 9.44 1,180.72 117.97 10.01

Cloud processes (2D) 12 1,209 817.64 61.88 13.21 517.94 38.49 13.46

Viscous fingering (3D) 15 118 86.69 9.17 9.45 42.89 4.71 9.11

Dark matter (3D) 40 2,592 18,388.86 1,366.45 13.46 24,480.42 1,758.04 13.92

Volcanic eruptions (2D) 12 811 460.17 37.99 12.11 1,004.37 81.75 12.29

Ionization front (2D) 16 135 104.74 12.00 8.73 55.73 6.26 8.90

Ionization front (3D) 16 763 3,750.00 300.96 12.46 4,029.71 294.29 13.69

Earthquake (3D) 12 1,203 3,896.52 338.64 11.51 1,973.49 158.12 12.48

Isabel (3D) 12 1,338 1,969.79 164.49 11.98 1,472.54 115.66 12.73

Starting Vortex (2D) 12 124 17.71 2.72 6.51 11.51 1.65 6.98

Sea Surface Height (2D) 48 1,787 12,420.98 670.00 18.54 27,791.00 1,669.52 16.65

Vortex Street (2D) 45 23 18.75 2.69 6.97 35.79 3.93 9.11

slightly slower for MT-PGA than for PD-PGA, but timings remain compa-

rable overall. In parallel, speedups are the most important for the largest

ensembles. However, the iterative nature of our algorithm has an impact

on parallel efficiency (the end of each loop implies a synchronization).

Still, our parallelization significantly reduces computation times, with less

than 6 minutes on average and at most 30 minutes for the largest en-

sembles, which we believe is an acceptable pre-processing time, prior to

interactive exploration.

4.5.2 Framework Quality

Figure 4.7 and Figure 4.8 report compression factors for our application

to data reduction (Section 4.4.1). These are ratios between the storage

size of the input BDTs and that of the MT-PGA basis (barycenter, axes

and coordinates). This factor is modest for a small example (Figure 4.7),

with few branches (135) and few members (16). Then, the overhead of

the MT-PGA basis is non-negligible. In contrast, for a larger ensemble

(Figure 4.8), this overhead is negligible and high compression factors (30)

can be achieved, while providing reconstructed merge trees which are

highly similar visually and which are still viable for the applications.

Figure 4.11 provides a visual comparison of the planar layouts gener-

ated by a selection of typical dimensionality reduction techniques. This

includes the classical Euclidean PCA (in RNv , where Nv is the number

of vertices in M), MDS [KW78] and t-SNE [vdMH08] (both with WT2 ).

Certain approaches [RT16, AVRT16, LPW21] applied PCA on top of vec-

torizations of topological descriptors (Section 4.1.1). A similar strategy can
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Figure 4.11 – Comparison of planar layouts for typical dimensionality reduction techniques, on two input ensembles (bold:

best value for each quality score). The color encodes the classification ground-truth (Appendix A).

be considered in our case, by embedding each input BDT B( f j) in R2×|B∗|,

such that the ith entry of this vector corresponds to the birth/death loca-

tion of the ith branch of B( f j) (i.e. the branch of B( f j) mapping to the

ith branch of B∗ by the optimal assignment of WT2 , Equation 3.4). PCA is

then computed for this vectorization (column MT-VEC). As shown in Fig-

ure 4.11, the layouts generated with MT-PGA nicely separates the ground-

truth classes, while other techniques tend to artificially group them or

even merge them. To further quantify this structure preservation, we run

k-means in the 2D layouts and evaluate the quality of the resulting clus-

tering (given the ground-truth Appendix A) with the normalized mutual

information (NMI) and adjusted rand index (ARI). The MT-PGA layout

is the only one in Figure 4.11 which generates an exact clustering in both

cases (NMI = ARI = 1).

Table 4.3 also extends this quantitative comparison to all our input

ensembles and confirms the superiority, on average, of MT-PGA for the

preservation of the clusters. Table 4.3 also includes a metric similarity in-

dicator, SIM, which evaluates the preservation by a layout of the Wasser-

stein metric WT2 . Specifically, given two points x and y in a planar layout

(with BDTs B( fx) and B( fy)), we first measure their pairwise distortion:

δ(x, y) =
(
||x− y||2 −WT2

(
B( fx),B( fy)

))2
.

This measure is then normalized into:

δ′(x, y) =
δ(x, y)

max∀x ̸=y
(
δ(x, y)

) .
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Table 4.3 – Comparison of layout quality scores, averaged over all ensembles (bold: best

values). The layouts induced by MT-PGA better preserve the global structure of the

ensemble and still preserve well WT2 .

Indicator PCA MDS (WT2 ) [KW78] t-SNE (WT2 ) [vdMH08] MT-VEC MT-PGA

NMI 0.79 0.82 0.88 0.78 0.94

ARI 0.71 0.73 0.84 0.64 0.90

SIM 0.60 0.85 0.75 0.76 0.80

Finally, we evaluate the global indicator SIM := 1− δ′, where δ′ stands

for the average of δ′(x, y) for all pairs (x, y) in the ensemble. SIM values

lie within the interval [0, 1] and are optimal near 1.

As expected, MDS maximizes this score by design, while MT-PGA

produces the second best score. Overall, MT-PGA preserves well WT2 as

well as the global ensemble structure. In comparison to standard tech-

niques (e.g. MDS or t-SNE), it also supports additional features, such as

correlation views and interactive reconstructions (Figs. 4.1, 4.9 and 4.10).

Figure 5.13 and Figure 4.13 extends Figure 4.11 to all our test ensem-

bles and it confirms visually the conclusions of the table of aggregated

scores (Table 4.3). In particular, it confirms that MT-PGA provides a trade-

off between the respective advantages of standard techniques such as MDS

[KW78] and t-SNE [vdMH08]. Specifically, MDS is known to preserve the

input metric well, while t-SNE tends to better preserve the global structure

of the data (i.e. the ground-truth classification), at the expense of metric

violation. MT-PGA provides a balance between these two behaviors: (i) it

improves structure preservation over MDS (it provides equivalent or bet-

ter NMI/ARI scores for 11 out of 12 ensembles) and (ii) it improves metric

preservation over t-SNE (it provides an equivalent or better SIM score for

9 out of 12 ensembles). Visually, this means that MT-PGA groups together

the members belonging to the same ground-truth class, while providing

a layout which is more faithful than t-SNE’s regarding the distances be-

tween the corresponding merge trees.

As can be expected, the straightforward PCA preserves the WT2 metric

poorly (as it is based on the L2 norm). Since it relies on a rough approx-

imation of B, a PCA derived from a vectorization of the BDTs (MT-VEC)

preserves poorly the global structure of the ensemble (MT-PGA provides

equivalent or better NMI/ARI scores for 11 out of 12 ensembles).

Figure 4.14 reports the evolution of the normalized fitting energy for

PD and MT-PGA computations (dmax = 2). Sudden energy drops can be

observed with clear kinks in the curves, indicating the finalization of the
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Figure 4.12 – Comparison of planar layouts for typical dimensionality reduction techniques on the first half of our test

ensembles. The color encodes the classification ground-truth Appendix A. For each quality score, the best value appears bold

and the rank of the score among all methods is in parenthesis.
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Figure 4.13 – Comparison of planar layouts for typical dimensionality reduction techniques on on the second half of our test

ensembles. The color encodes the classification ground-truth Appendix A. For each quality score, the best value appears bold

and the rank of the score among all methods is in parenthesis.
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Figure 4.14 – Evolution of the normalized fitting energy, for PD (left) and MT (right)

PGA. The scatter plots show the projected variance (
←→A1 VS

←→A2).

first dimension (Section 4.3.1), and the switch to the second, which im-

mediately improves the overall fit. The algorithm stops when the energy

decreases by less than 1%. The curve flat tails indicate that this criterion is

reasonable. Figure 4.14 also reports scatter plots of the projected variances.

For a given axis, it is the percentage of the variance of the projected trees

(along the axis) over the global variance of the input BDTs (i.e. average

of the squared WT2 distances to the barycenter B∗). For all examples, the

corresponding point is located below the diagonal (blue line): the pro-

jected variance is indeed larger for the first axis than for the second. This

confirms the ability of our algorithm, similarly to the classical PCA, to

identify in practice the most informative directions first. This is confirmed

visually in our 2D layouts, where the first axis (blue) is always longer than

the second (black).

Figure 4.15 extends to 10 dimensions the scatter plots of projected vari-

ance reported in Figure 4.14, which were computed for only 2 dimensions.

This figure confirms the conclusions of Figure 4.14. Except for a very mild

oscillation for a specific dataset (“Cloud processes”, PD-PGA, with a lo-

cal maximum of low amplitude at 4 dimensions), overall, the projected

Figure 4.15 – Evolution of the projected variance (and cumulative variance, inset) with

the number of geodesic axes for PD-PGA (left) and MT-PGA (right).
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variance is indeed monotonically decreasing in practice for an increasing

number of dimensions (i.e. the algorithm does tend to identify the most

informative directions first).

4.5.3 Limitations

Our overall strategy (alternation of fitting and constraint enforcement)

is similar at a high-level to previous work on the optimal transport of

histograms [SC15]. Thus, it shares the same high-level limitations. The

constraint enforcement (Section 4.3.3) induces, by construction, an energy

increase. Then, it is possible that, at the next iteration, the fitting optimiza-

tion (which is itself guaranteed to decrease the energy, Section 4.3.2) does

not manage to compensate the above increase. This situation occurs dur-

ing the first iteration for the Viscous Fingering ensemble (dark green line,

Figure 4.14, right), where the energy increased between two iterations.

This temporary energy increase is the only one we observed in all our ex-

periments. Moreover, it did not impact the rest of the algorithm, as it was

immediately compensated at the next iteration (Figure 4.14). Then, we be-

lieve that this theoretical limitation has a very limited impact in practice

and that robust implementations can be obtained by stopping the algo-

rithm in case of multiple, consecutive energy increases (which we have not

observed). Another limitation involves the sampling of the geodesic axes

(N2, Section 4.3.2). When N2 is too low, BDTs which are close in B may

project to the same points on the geodesic axes, possibly resulting overall

in collocated points in the MT-PGA basis. This can be easily resolved by

increasing N2, at the cost of increased computation times. Finally, sim-

ilarly to barycenter optimization ([TMMH14, VBT20] or Chapter 3), the

overall fitting energy (Equation 4.5) is non-convex and can in principle

admit multiple local minimizers. However, our experiments indicate that

the axes returned by our approach are relevant, as the projected variance

does decrease for increasing dimensions (Section 4.5.2).

4.6 Summary

In this chapter, we presented a computational framework for the Principal

Geodesic Analysis of merge trees (MT-PGA), with applications to data

reduction and dimensionality reduction. In particular, the visualizations

derived from our core contribution (Figure 4.1, Figure 4.9 and Figure 4.10)

enable the interactive, visual inspection of the variability in the ensemble,
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both at a global level (with our two-dimensional layouts) and at a feature

level (with our persistence correlation views). Our framework trivially

extends to extremum persistence diagrams and our algorithm enables in

both cases PGA basis computations within minutes for real-life ensembles.
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This chapter presents a computational framework for the Wasserstein

auto-encoding of merge trees (MT-WAE), a novel extension of the

classical auto-encoder neural network architecture to the Wasserstein met-

ric space of merge trees (Chapter 3). In contrast to traditional auto-

encoders which operate on vectorized data, our formulation explicitly

manipulates merge trees on their associated metric space at each layer

of the network, resulting in superior accuracy and interpretability. Our

novel neural network approach can be interpreted as a non-linear gener-

alization of previous linear attempts (Chapter 4) at merge tree encoding.

It also trivially extends to persistence diagrams. Extensive experiments

on public ensembles demonstrate the efficiency of our algorithms, with

MT-WAE computations in the orders of minutes on average. We show

the utility of our contributions in two applications adapted from previous

work on merge tree encoding (Chapter 4). First, we apply MT-WAE to

data reduction and reliably compress merge trees by concisely representing

them with their coordinates in the final layer of our auto-encoder. Second,

we document an application to dimensionality reduction, by exploiting the

latent space of our auto-encoder, for the visual analysis of ensemble data.

We illustrate the versatility of our framework by introducing two penalty

terms, to help preserve in the latent space both the Wasserstein distances

between merge trees, as well as their clusters. In both applications, quan-

titative experiments assess the relevance of our framework. Finally, we

provide a C++ implementation that can be used for reproducibility.

The work presented in this chapter has been published in the jour-

nal IEEE Transactions on Visualization and Computer Graphics in 2023

[PT24]. Our implementation is available at https://github.com/MatPont/

MT-WAE and the data used in this work at https://github.com/MatPont/

WassersteinMergeTreesData. It will soon be integrated in the Topology

ToolKit [TFL+
17].

https://github.com/MatPont/MT-WAE
https://github.com/MatPont/MT-WAE
https://github.com/MatPont/WassersteinMergeTreesData
https://github.com/MatPont/WassersteinMergeTreesData


119

Our Contributions in one Image

Figure 5.1 – Visual analysis of the Earthquake ensemble
(
(a) each ground-truth class is represented by one of its members

)
,

with our Wasserstein Auto-Encoder of Merge Trees (MT-WAE). We apply our contributions to data reduction and compress

the input trees
(
(b), right

)
by simply storing their coordinates in the last decoding layer of our network. We exploit the

latent space of our network to generate 2D layouts of the ensemble (c). In contrast to classical auto-encoders, MT-WAE

maintains merge trees at each layer of the network, which results in improved accuracy and interpretability. Specifically, the

reconstruction of user-defined locations
(
(c), purple) enables an interactive exploration of the latent space: the reconstructed

curve (d) enables a continuous navigation between the clusters
(
from dark red to pink and light pink, (c)

)
. MT-WAE also

supports persistence correlation views (e) (adapted from Chapter 4), which reveal the barycenter’s persistent features which

exhibit the most variability in the ensemble (far from the center). Finally, by tracking the persistence evolution of individual

features as they traverse the network down to its latent space, we introduce a Feature Latent Importance measure, which

identifies the most informative features within the ensemble
(
(e), red circles).
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5.1 Context

Developing statistical analysis tools to support the interactive analysis and

interpretation of ensemble data became an important challenge. Recently,

several works explored this direction, in particular with the notion of av-

erage topological representation ([TMMH14, LCO18, VBT20, YWM+
19b] and

Chapter 3). These approaches can produce a topological representation

which nicely summarizes the ensemble. Moreover, their application to

clustering (Chapter 3) reveal its main trends. However, they do not pro-

vide any hints regarding the variability of the features in the ensemble. For

this, in Chapter 4, we extended the notion of principal geodesic analysis

to ensembles of merge trees. However, this approach implicitly assumes a

linear relation between the merge trees of the ensemble. Specifically, it as-

sumes that merge tree branches evolve linearly (in the birth/death space,

Section 2.4) within the ensemble.

This chapter addresses this issue with a novel formulation based on

neural networks and introduces the first framework for the non-linear en-

coding of merge trees, hence resulting in superior accuracy. Specifically,

we formulate merge tree non-linear encoding as an auto-encoding prob-

lem (Section 5.2). We contribute a novel neural network called Wasserstein

Auto-Encoder of Merge Trees. This network is based on a novel layer model,

capable of processing merge trees natively, without pre-vectorization. We

believe this contribution to be of independent interest, as it enables an

accurate and interpretable processing of merge trees by neural networks

(without restrictions to auto-encoders). We contribute an algorithm for the

optimization of such a network (Section 5.3). We illustrate the relevance

of our contributions for visual analysis with two applications, data reduc-

tion (Section 5.4.1) and dimensionality reduction (Section 5.4.2). Similarly

to previous linear attempts (Chapter 4), since our approach is based on

the Wasserstein distance between merge trees (Chapter 3), which gener-

alizes the Wasserstein distance between persistence diagrams [EH09], our

framework trivially extends to persistence diagrams by simply adjusting

a single parameter.

5.1.1 Related Work

We refer to Section 3.1.1 for an overview of the literature regarding en-

semble analysis and topological methods.

In Chapter 4, we extended the generic notion of principal geodesic

analysis to the Wasserstein metric space of merge trees, resulting in im-
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proved accuracy and interpretability with regard to the straightforward

application of PCA on merge tree vectorizations. Similarly, Sisouk et al.

[SDT23] introduced a simpler approach for the linear encoding of persis-

tence diagrams, with a less constrained framework based on dictionaries.

However, these approaches implicitly assume a linear relation between

the topological descriptors of the ensemble. For instance, it assumes that

a given feature (i.e. a given branch of the merge tree) evolves linearly in

the birth/death space (Section 3.2) within the ensemble. However, this

hypothesis is easily challenged in practice (Figure 5.3 and Figure 5.5), po-

tentially leading to inaccuracies. Our work overcomes this limitation with

a drastically different formulation (based on auto-encoding neural net-

works) and introduces the first framework for the non-linear encoding of

merge trees, resulting in superior accuracy.

General purpose methods have been documented for non-linear en-

coding (e.g. topological auto-encoders [MHRB20], or Wasserstein auto-

encoders [TBGS18]). Our work drastically differs from these methods, in

terms of design and purpose. These methods [MHRB20, TBGS18, HMR21]

employ a classical auto-encoder (Section 5.2.1) to which they add special-

ized penalty terms. Then, their input is restricted to point sets (or vec-

torized data). In contrast, our work focuses on sets of merge trees (or

persistence diagrams). This different kind of input requires a novel neural

network model, capable of processing these topological objects natively

(Section 5.2).

5.1.2 Contributions

This chapter makes the following new contributions:

1. An approach to Merge tree non-linear encoding: We formulate the non-

linear parametrization of the Wasserstein metric space of merge trees

(and persistence diagrams) as an auto-encoding problem. Our for-

mulation (Section 5.2) generalizes and improves previous linear at-

tempts (Chapter 4).

2. A vectorization-free neural network architecture for Merge Trees: We con-

tribute a novel neural network architecture called Wasserstein Auto-

Encoder of Merge Trees, inspired by the classical auto-encoder, which

can natively process merge trees (and persistence diagrams) with-

out prior vectorization. For this, we contribute a novel layer model,

which takes a set of merge trees on its input and produces another



122 Chapter 5. Wasserstein Auto-Encoders of Merge Trees and Persistence Diagrams

set of merge trees on its output, along with their coordinates in

the layer’s parametrization. This results in superior accuracy (Sec-

tion 5.5.2) and interpretability (Section 5.4.2). We contribute an algo-

rithm for the optimization of this network (Section 5.3). We believe

this contribution to be of independent interest.

3. An application to data reduction: We describe how to adapt previous

work (Chapter 4) to our novel non-linear framework, in the context

of data reduction applications (Section 5.4.1). Specifically, the merge

trees of the input ensemble are significantly compressed, by solely

storing the final decoding layer of the network, as well as the coor-

dinates of the input trees in this layer. We illustrate the interest of

our approach with comparisons to linear encoding (Chapter 4) in the

context of feature tracking and ensemble clustering applications.

4. An application to dimensionality reduction: We describe how to adapt

previous work (Chapter 4) to our novel non-linear framework, in

the context of dimensionality reduction applications (Section 5.4.2).

Specifically, each tree of the ensemble is embedded as a point in a

planar view, based on its coordinates in our auto-encoder’s latent

space. To illustrate the versatility of our framework, we introduce

two penalty terms, to improve the preservation of clusters and dis-

tances between merge trees.

5. Implementation: We provide a C++ implementation of our algorithms

that can be used for reproducibility purposes.

5.2 Formulation

This section describes our novel extension of the classical auto-encoder

neural network architecture to the Wasserstein metric space of merge trees,

with the novel notion of Merge Tree Wasserstein Auto-Encoder (MT-WAE).

First, we describe a geometric interpretation of the classical auto-encoders

(Section 5.2.1), which we call in the following Euclidean Auto-Encoders

(EAE). Next, we describe how to generalize each geometrical tool used

in EAE (Section 5.2.1) to the Wasserstein metric space of merge trees (Sec-

tion 5.2.2). Finally, once these tools are available, we formalize our notion

of MT-WAE with a novel neural network architecture (Section 5.2.3), for

which we document an optimization algorithm in Section 5.3.
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5.2.1 An Interpretation of Euclidean Auto-Encoders

Let P = {p1, p2, . . . , pN} be a point set in a Euclidean space Rd (Fig-

ure 5.2a). The goal of Euclidean Auto-Encoders (EAE) is to define a d′-

dimensional parameterization of P (with d′ ≤ d) which describes well the

data (which enables its accurate reconstruction). Let B1 = {b1, b2, . . . , bd′}
be a basis of linearly independent vectors in Rd (Figure 5.2a). B1 can be

written in the form of a d× d′ matrix, for which each of the d′ columns is

a vector of the basis. Then, one can express the coordinates ψ1(pi) ∈ Rd′

of each point pi ∈ P with the basis B1:

ψ1(pi) = arg min
αi

||pi − B1αi||22 + o1, (5.1)

where o1 is an offset vector of Rd′ , and where αi ∈ Rd′ can be seen as a set

of d′ coefficients, to apply on the d′ vectors of the basis B1 to best estimate

pi. Note that Equation 5.1 can be re-written as a linear transformation:

ψ1(pi) = B+
1 pi + o1, (5.2)

where B+
1 is the pseudoinverse of the matrix B1 (Figure 5.2a-b).

Given this new parameterization ψ1, one can estimate a reconstruction

of the point pi in Rd, noted p̂i. For this, let us consider another, similar,

linear transformation ψ2 (Figure 5.2c-d), defined respectively to a second

basis B2 (given as a d′ × d matrix) and a second offset vector o2 (in Rd).

Then, the reconstruction p̂i of each point pi is given by:

p̂i = ψ2 ◦ ψ1(pi) = B+
2 (B+

1 pi + o1) + o2.

Figure 5.2 – Geometric interpretation of Euclidean Auto-Encoders (EAE, Section 5.2.1).

In its simplest form (one encoding and one decoding layer, d′ = 2), an EAE can be

viewed as the composition of a linear transformation ψ1
(
(a) to (b)

)
defined with respect

to a first basis B1, followed by a non-linearity σ
(
here ReLU, (b) to (c)

)
, followed by a

second linear transformation ψ2
(
(c) to (d)

)
defined with respect to a second basis B2.

Specifically, both ψ1 and ψ2 are optimized (via the optimization of B1 and B2) to minimize

the reconstruction error between the input (a) and the output (d). In the case where σ

is the identity, this reconstruction optimization is equivalent to Principal Component

Analysis [BK88].
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Figure 5.3 – Comparison between PCA (a) and EAE (b) for the 1-dimensional encoding

of a 2D point set sampling a 1-manifold (color: rotation angle). In its latent space
(
(a),

bottom
)
, PCA linearly projects the input points to a line, hence interleaving points from

the upper and lower parts of the circle. This results in a poor reconstruction
(
(a), right

)
,

where points are interleaved along the axis B1. In contrast, EAE optimizes a composition

of non-linear transformations, which consistently unwraps the circle onto a line in its

latent space
(
(b), bottom

)
, while nicely preserving the intrinsic parameterization of the

circle (rotation angle). This results in an accurate reconstruction
(
(b), right

)
: the em-

bedding of the axis Bne in the data defines a faithful 1-dimensional parameterization of

the circle.

To get an accurate reconstruction p̂i (Figure 5.2d) for all the points pi ∈ P,

one needs to optimize both ψ1 and ψ2, to minimize the following data

fitting energy:

EL2 =
N

∑
i=1
||pi − p̂i||22 =

N

∑
i=1
||pi − ψ2 ◦ ψ1(pi)||22. (5.3)

As discussed by Bourlard and Kamp [BK88], this formulation is a gen-

eralization of Principal Component Analysis (PCA) [Pea01], a seminal sta-

tistical tool for variability analysis. However, PCA assumes that the in-

put point cloud can be faithfully approximated via linear projections. As

shown in Figure 5.3, this hypothesis can be easily challenged in practice.

This motivates a non-linear generalization of PCA, capable of faithfully

approximating point clouds exhibiting non-linear structures (Figure 5.3).

Specifically, to introduce non-linearity, the above linear transforma-

tions ψ are typically composed with a non-linear function σ, called activa-

tion function, such that the transformation of each point pi, noted Ψ(pi),

is now given by: Ψ(pi) = σ
(
ψ(pi)

)
. For example, the rectifier activa-

tion function (“ReLU”) will take the jth coordinate of each data point (i.e.(
ψ(pi)

)
j) and snap it to zero if it is negative (Figure 5.2b-c). We call the

above non-linear transformation Ψ a transformation layer. It is character-

ized by its own vector basis B and its own offset vector o.



5.2. Formulation 125

Next, to faithfully approximate complicated non-linear input distribu-

tions, the above transformation layer is typically composed with a number

(ne + nd) of other transformation layers, defined similarly. Then, the initial

data fitting energy (Equation 5.3) can now be generalized into:

EL2 =
N

∑
i=1
||pi −Ψne+nd ◦ · · · ◦Ψne+1 ◦Ψne ◦ · · · ◦Ψ2 ◦Ψ1(pi)||22, (5.4)

where each transformation layer Ψk is associated with its own dk-

dimensional vector basis Bk and its offset vector ok. Then, the notion of

Auto-Encoder is a specific instance of the above formulation, with:

1. d1 > d2 > · · · > dne , and

2. dne < dne+1 < · · · < dne+nd = d, and

3. σne+nd is the identity.

Specifically, ne and nd respectively denote the number of Encoding and De-

coding transformation layers, while dne is the dimension of the so-called

latent space. In practice, dne is typically chosen to be much smaller than

the input dimensionality (d), for non-linear dimensionality reduction pur-

poses (each input point pi is then represented in dne dimensions, according

to its coordinates in Bne , noted αi
ne
∈ Rdne ).

Equation 5.4 defines an optimization problem whose variables (the

ne + nd bases and offset vectors) can be efficiently optimized (e.g. with

gradient descent [KB15]) by composing the transformation layers within

a neural network. Then, the gradient ∇EL2 of EL2 can be estimated by

exploiting the automatic differentiation capabilities of modern neural net-

work implementations [PGM+
19], themselves based on the application of

the chain-rule derivation on the above composition of transformation lay-

ers.

5.2.2 From EAE to MT-WAE

When the input data is not given as a point cloud in a Euclidean space

(Section 5.2.1) but as an abstract set equipped with a metric, the above

EAE formulation needs to be extended. For this, we redefine in this section

the low-level geometrical tools used in EAE (Section 5.2.1), but within the

context of the Wasserstein metric space B (Chapter 3). In particular, we

formalize the following notions:

1. BDT vector (Figure 5.4b);
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Figure 5.4 – Low-level geometrical tools in the Wasserstein metric space of merge trees

(Section 5.2.2). Given an origin MT and its BDT O
(
counting |O| nodes (a)

)
, a BDT

vector V1(O) is defined in the birth/death space as a concatenation of |O| 2D vectors(
blue arrows (b)

)
. Given a second BDT vector V2(O)

(
cyan arrows (c)

)
, a basis B(O)

can be defined
(
(d), here with d′ = 2

)
. For a given set of coefficients α ∈ Rd′ , a new

merge tree and its BDT (e) can be reconstructed by applying a sum of 2D displacements

∑
j=d′

j=1 αj
(
Vj(O)

)
i to each branch bi of O

(
(d), black dashes

)
.

2. BDT basis (Figure 5.4d);

3. BDT basis projection (Figure 5.4d);

4. BDT transformation layer (Figure 5.5b).

(1) BDT vector: Given a BDT B with |B| branches, a BDT vector V(B) ∈ B

is a vector in R2|B|, which maps each branch b ∈ B to a new location

in the 2D birth/death space. B is the origin of V(B). This is illustrated

for example in Figure 5.4b, where the branches of a given merge tree(
Figure 5.4a

)
are displaced in the birth-death plane (light blue vectors

from the spheres of matching color).

(2) BDT basis: Given an origin BDT O, a d′-dimensional basis of BDT

vectors, noted B(O), is a set {V1(O),V2(O), . . . ,Vd′(O)} of d′ linearly in-

dependent BDT vectors, having for common origin O. This is shown in

Figure 5.4d, where two BDT vectors (from Figure 5.4b, and Figure 5.4c,

blue and green arrows) are combined into a basis. Section 5.3.4 clarifies

the basis initialization by our approach.

(3) BDT basis projection: Given an arbitrary BDT B, its projection error

e(B) in a d′-dimensional BDT basis B(O) is:

e(B) = min
α

(
WT2

(
B,O + B(O)α

))2
, (5.5)

where α ∈ Rd′ can be interpreted as a set of coefficients to apply on the

d′ BDT vectors of B(O) to best estimate B. Then, the projection of B in
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Figure 5.5 – Overview: given an input ensemble, with its merge trees and BDTs (a), our Wasserstein Auto-Encoder of

Merge Trees (MT-WAE) optimizes an auto-encoder (for this example, ne = nd = 2) where each layer Πk natively processes

BDTs (without pre-vectorization). Specifically, each layer Πk can be interpreted as a local auto-encoder (b), where an input

sub-layer Ψin
k transforms the input BDT Bk−1( fi) into a set of coefficients αi

k ∈ Rdk and where an output sub-layer Ψout
k

transforms these coefficients back into a valid BDT Bk( fi). The aggregated views
(
(c), (d), (e), ( f ), (g)

)
, which overlap all

the BDTs in the birth/death space (one color per BDT), show the ability of MT-WAE to progressively unwrap non-linear

structures (circles) as the BDTs progress down the network, resulting in faithful local parameterizations in latent space
(
(e),

the individual angular parameterizations of the circles are well preserved
)
, as well as accurate reconstructions (g). This native

support of BDTs results in a superior accuracy (Section 5.5.2) and an improved interpretability: individual features can now

be tracked as they traverse the network, enabling new visual analysis capabilities (Section 5.4.2).

B(O), noted ψ(B), is given by the optimal coefficients α associated to the

projection error of B (Equation 5.5):

ψ(B) = arg min
α

(
WT2

(
B,O + B(O)α

))2
. (5.6)

The above equation is a re-interpretation of Equation 5.1 (Section 5.2.1),

where the L2 norm (used for EAE) is replaced by the Wasserstein distance

WT2 . This projection procedure is illustrated in Figure 5.4d. Given a BDT

basis B(O) (blue and green arrows), the projection of an arbitrary BDT

B is the linear combination ψ(B) of the BDT vectors of the basis which

minimizes its Wasserstein distance WT2 to B. In the birth-death space, the

branches of the basis origin O are represented by the colored spheres at

the intersection between the blue and green arrows, while the branches

of ψ(B) are represented by the other spheres of matching color. In this

example, the linear combination ψ(B) which minimizes its distance to B is

obtained for the coefficients α = (0.5, 1). Then, to go from O to ψ(B), each

branch bi of O is displaced by 0.5 V1(O) (intersection between the dashed

lines and the blue arrows) and then by 1 V2(O) (intersection between the

dashed lines and the green arrows). The resulting merge tree is shown in

Figure 5.4e. In contrast to the merge tree of the basis origin
(
Figure 5.4a

)
,
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the persistence of the cyan branch has increased while that of the black

branch has decreased.

(4) BDT transformation layer: Once the above tools have been formalized,

we can introduce the novel notion of BDT transformation layer. Similarly

to the Euclidean case (Section 5.2.1), a non-linear activation function σ (in

our case, Leaky ReLU) can be composed with the above projection, yielding

the new function Ψ(B) = σ
(
ψ(B)

)
. Note that, at this stage, Ψ(B) can be

interpreted as a set of coefficients to apply on the BDT basis B(O) to best

estimate B. In other words, Ψ(B) is not a BDT yet, but simply a set of

coefficients, which can be used later to reconstruct a BDT. Thus, a second

transformation needs to be considered, to transform the set of coefficients

Ψ(B) back into a BDT. Then, we define the notion of BDT transformation

layer, noted Π(B), as the composition Π(B) = Ψout ◦Ψin(B) (Figure 5.5b):

Ψin(B) = σ

(
arg minα

(
WT2

(
B,Oin + Bin(Oin)α

))2
)

Ψout(α) = γ
(
Oout + Bout(Oout)α

)
,

where γ(B) is a projection which transforms B
into a valid BDT, i.e. which respects the Elder rule

(Section 2.4). Given a branch b ∈ B, γ enforces

that: γ(b)x < γ(b)y and [γ(b)x, γ(b)y] ⊆ [0, 1]

(inset).

BDT transformation layers can be seen as local auto-encoders (Figure 5.5b):

the first step Ψin converts an input BDT into a set of coefficients with a

basis projection and a non-linearity, while the second step Ψout converts

these coefficients into a BDT. Note that each BDT transformation layer is

associated with its own input and output d′-dimensional bases Bin(Oin)

and Bout(Oout).

The processing of an ensemble of BDTs by a BDT transformation layer

is illustrated in Figure 5.5. Specifically, Figure 5.5c shows a zoom of the

birth-death space, where all the BDTs have been aggregated (one color per

BDT, each BDT has two branches, hence two patterns appear, one circle per

branch). The left inset of Figure 5.5b shows the non-linearly transformed

set of BDTs after the first BDT transformation layer, Π1. Next, the first

step Ψin
2 of the next BDT layer Π2 converts each BDT Π1

(
B( fi)

)
into a set

of coefficients αi
2. Finally, the second step Ψout

2 of the layer Π2 converts
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each of these set of coefficients into a new, non-linearly transformed BDT

Π2 ◦Π1
(
B( fi)

) (
Figure 5.5b, right inset

)
.

5.2.3 MT-WAE Formulation

Now that the above geometrical tools have been introduced for the Wasser-

stein metric space of merge trees, we can now formulate MT-WAE by

direct analogy to the Euclidean case (Section 5.2.1). Given a set SB =

{B( f1), . . . ,B( fN)} of input BDTs, a MT-WAE is a composition of BDT

transformation layers Πk(B) (Figure 5.5), minimizing the following en-

ergy:

EWT2
=

N

∑
i=1

(
WT2

(
B( fi), Πne+nd ◦ · · · ◦Πne ◦ · · · ◦Π1

(
B( fi)

)))2

, (5.7)

where each BDT transformation layer Πk is associated with its own dk-

dimensional input and output vector bases Bin
k (Oin

k ) and Bout
k (Oout

k ). More-

over, the dimensions of the successive bases are chosen such that:

1. d1 > d2 > · · · > dne , and

2. dne < dne+1 < · · · < dne+nd ,

where ne and nd denote the number of Encoding and Decoding layers and

where dne is the dimension of the MT-WAE latent space. Equation 5.7 is a

direct analog to the classical EAE (Equation 5.4): the standard transforma-

tion layers Ψk have been replaced by BDT transformation layers Πk and

the L2 norm by the distance WT2 .

Figure 5.5 illustrates a network of BDT transformation layers opti-

mized on a synthetic ensemble (our optimization algorithm is described

in Section 5.3). As mentioned in the previous section, each input BDT

(spheres in the aggregated birth-death views, one color per BDT) is non-

linearly transformed by the BDT transformation layers
(
see for instance

Figure 5.5d and Figure 5.5f
)
. As a result, in this example, the BDT transfor-

mation layers progressively unwrap the non-linear structures in the birth-

death plane
(
circles in Figure 5.5c

)
as the BDTs traverse the network down

to the latent space
(
Figure 5.5e

)
, where the resulting layout in the birth-

death plane (line segments) manages to faithfully encode the purposely

designed parameterization of the ensemble: the order of rotation angles

(colors) is well preserved along the segments in latent space.
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5.3 Algorithm

This section presents our algorithm for the minimization of Equation 5.7.

5.3.1 Overview

Algorithm 2 provides an overview of our main algorithm. The set of opti-

mization variables, noted θ, includes the (ne + nd) input and output BDT

bases, along with their origins (line 2). The optimization of these variables

follows the standard overall procedure for the optimization of a neural

network. First, θ is initialized (Section 5.3.4). Then, the input ensemble of

BDTs SB (Figure 5.5a) traverses the network to generate a reconstructed

ensemble of BDTs, noted ŜB (line 7 and Figure 5.5g). This is traditionally

denoted as the Forward propagation (Section 5.3.5). Given ŜB , the energy

EWT2
(θ) (Equation 5.7) can be evaluated and its gradient ∇EWT2

(θ) can be

estimated by automatic differentiation (based on the application of the

Algorithm 2 Wasserstein Auto-Encoder (algorithm overview).
Input: Set of BDTs SB = {B( f1), . . . ,B( fN)}.
Output1: Set of (ne + nd) input origins θOin = {Oin

1 ,Oin
2 , . . . ,Oin

ne+nd
};

Output2: Set of (ne + nd) input bases:

θBin = {Bin
1 (Oin

1 ), Bin
2 (Oin

2 ), . . . , Bin
ne+nd

(Oin
ne+nd

)};
Output3: For each of the input BDTs (i ∈ {1, 2, . . . , N}), set of (ne + nd)

input coefficients: θi
α = {αi

1 ∈ Rd1 , αi
2 ∈ Rd2 , . . . , αi

ne+nd
∈ Rdne+nd };

Output4: Set of (ne + nd) output origins:

θOout = {Oout
1 ,Oout

2 , . . . ,Oout
ne+nd

};
Output5: Set of (ne + nd) output bases:

θBout = {Bout
1 (Oout

1 ), Bout
2 (Oout

2 ), . . . , Bout
ne+nd

(Oout
ne+nd

)}.

1: // Overall set of optimization variables

2: θ ← {θOin , θBin , θOout , θBout};
3: // Initialization of the optimization variables (Section 5.3.4)

4: Initialize(θ);

5: while EWT2
(θ) decreases do

6: // Forward propagation of the BDT ensemble SB (Section 5.3.5)

7: ŜB ← Forward(SB , θ);

8: // Backward propagation (Section 5.3.6)

9: θ ← Backward(SB , ŜB);
10: end while
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chain-rule on the composition of BDT transformation layers). Given the

gradient ∇EWT2
(θ), a step of gradient descent can be achieved to update

the optimization variables θ (line 9). This is traditionally denoted as the

Backward propagation (Section 5.3.6). These two steps are then iterated un-

til the energy stops decreasing (in practice until it decreases by less than

1% between two iterations). For our implementation, we relied on the Py-

Torch neural network framework [PGM+
19] for automatic differentiation,

and we used its Adam solver for gradient descent [KB15].

5.3.2 Basis Projection

We start by describing an efficient Assignment/Update algorithm for the

projection of a BDT B into a BDT basis B(O) (Equation 5.6), as it is a core

geometrical component used throughout our approach.

The purpose of the projection (Equation 5.6) is to find a set of coeffi-

cients α ∈ Rd′ to apply on the d′ BDT vectors of B(O) to best estimate B.

The geodesic analysis of merge trees (Chapter 4) faces a similar issue, but

its formulation (restricting α to [0, 1]d
′
) allows for an iterative, brute-force

optimization. Here, we introduce a more general and efficient strategy.

This discussion describes the case where the optimal assignment ϕ∗ of

the assignment step is a bijection between off-diagonal points of the 2D

birth/death plane. Section 5.3.3 details the general case, where ϕ∗ may

send points of B to the diagonal of B̂, and reciprocally.

(1) Assignment step: Let us assume that we are given an initial set of

coefficients α. Then, the estimation B̂ of B is given by B̂ ← O+ B(O)α. The

purpose of the assignment step is to refine the evaluation of WT2 (B, B̂). For

this, we first compute the optimal assignment ϕ∗ between B and B̂, w.r.t.

Equation 2.3. Then, WT2 (B, B̂) can be re-written as:

WT2 (B, B̂)2 =
|B|

∑
i=1
||bi − ϕ∗(bi)||22. (5.8)

(2) Update step: Given the above estimation B̂, the goal of the update step

is to improve the coefficients α, in order to decrease WT2 (B, B̂). Let B̂′

be a vector representation of B̂. Specifically, B̂′ is a vector in R2|B̂| which

concatenates the coordinates in the 2D birth/death plane of each branch

bi of B̂. B̂′ can be decomposed into O′ +
(

B(O′)
)′

α, where
(

B(O′)
)′ is a

(2|B̂|)× d′ matrix. Additionally, let B′ be a similar vector representation

of B, but where the entries have been specifically re-ordered such that, for
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each of its 2D entries, we have:

(B′)i = ϕ−1
∗
(
(B̂′)i

)
. (5.9)

Intuitively, B′ is a re-ordered vector representation of B, such that its ith

entry exactly matches though ϕ∗ with the ith entry of B̂′. Given this vec-

tor representation, the Wasserstein distance WT2 (B, B̂) for a fixed optimal

assignment ϕ∗ (Equation 5.8) can then be re-written as an L2 norm:

WT2 (B, B̂)2 = ||B′ − B̂′||22. (5.10)

Then, given the optimal assignment ϕ∗, the optimal α∗ ∈ Rd′ are:

α∗ = arg minα ||B′ − B̂′||22
α∗ = arg minα ||B′ −

(
O′ +

(
B(O′)

)′
α
)
||22

α∗ = arg minα ||B′ −O′ −
(

B(O′)
)′

α||22.

Similarly to the Euclidean case (Equation 5.2), it follows then that α∗ can

be expressed as a function of the pseudoinverse of
(

B(O′)
)′:

α∗ =
((

B(O′)
)′)+

(B′ −O′). (5.11)

At this stage, the estimation B̂ can be updated with the above optimized

coefficients α∗: B̂ ← O + B(O)α∗.
The above Assignment/Update sequence is then iterated. Each iteration

decreases the projection error e(B) constructively: while the Update phase

(2) optimizes α (Equation 5.5) to minimize the projection error under the

current assignment ϕ∗, the next Assignment phase (1) further improves

(by construction) the assignments (term WT2 in Equation 5.5), hence de-

creasing the projection error overall. In our implementation, this iterative

algorithm stops after a predefined number of iterations nit.

5.3.3 General Formulation of Basis Projection

Section 5.3.2 presents an Assignment/Update algorithm to project an input

BDT B into a given BDT basis B(O).
In the Assignment phase, given an initial set of coefficients α ∈ Rd′ , the

estimation B̂ of B is given by :

B̂ ← O + B(O)α. (5.12)

Given this estimation B̂, the assignment step first evaluates the Wasser-

stein distance WT2 (B, B̂). For this, the optimal assignment ϕ∗ between B
and B̂ is computed with regard to the Wasserstein distance (Equation 3.4).
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Figure 5.6 – When considering an assignment (purple arrows) in the 2D birth/death

planes between augmented BDTs, four cases can occur (purple numbers). Case (1):

an off-diagonal branch (blue dot) can be mapped to an off-diagonal branch (green

dot). Case (2): an off-diagonal branch (blue dot) can be mapped to an augmented

diagonal branch (green circle). Case (3): an augmented diagonal branch (blue circle)

can be mapped to an augmented diagonal branch (green circle). Case (4): an augmented

diagonal branch (blue circle) can be mapped to an off-diagonal branch (green dot).

Section 5.3.2 covers the cases (1) and (2). Section 5.3.3 generalizes this formulation to all

cases.

Then, given the optimal assignment ϕ∗, the Wasserstein distance

WT2 (B, B̂) can be re-written as:

WT2 (B, B̂)2 =
|B|

∑
i=1

0 if both bi and ϕ∗(bi) are on the diagonal,

||bi − ϕ∗(bi)||22 otherwise.
(5.13)

The purpose of the subsequent Update step is precisely to optimize α

in order to minimize the evaluation of WT2 (B, B̂) by the above equation.

For this, one needs to isolate from Equation 5.13 all the terms involving α

from those which do not.

In the simple case where ϕ∗ describes a bijection between off-diagonal

points (case covered in Section 5.3.2), no branch of B depends on α. Then

the isolation of the terms involving α is simple: only the branches of B̂
depend on α (Equation 5.12).

In the more general case, things are a bit more involved. As illustrated

in Figure 5.6, the computation of the optimal assignment ϕ∗ : B → B̂
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(purple arrows) implies a pre-processing phase of augmentation of the 2D

birth/death plane. As described in Section 2.4, B̂ is augmented with the

diagonal projections of the branches of B (Figure 5.6, green circles) and

B is augmented with the diagonal projections of the branches of B̂ (Fig-

ure 5.6, blue circles). This augmentation phase enables the modeling of the

destruction (or creation) of features during the assignment ϕ∗ (between the

blue and green items, Figure 5.6). Then, the following four cases can occur

(Figure 5.6):

Case (1): An off-diagonal branch b1 ∈ B is mapped to an off-diagonal branch

ϕ∗(b1) ∈ B̂. Then, the birth/death values of b1 do not depend on α and

only the birth/death values of ϕ∗(b1) do. This corresponds to the case

covered by Section 5.3.2.

Case (2): An off-diagonal branch b2 ∈ B is mapped to a diagonal branch

ϕ∗(b2) ∈ B̂. Then, the birth/death values of b2 do not depend on α. Then,

this case is also covered by Section 5.3.2.

Case (3): A diagonal branch b3 ∈ B is mapped to a diagonal branch ϕ∗(b3) ∈
B̂. In that case, the ground distance d2

(
b3, ϕ∗(b3)

)
(Equation 2.2) is set to

zero by convention (first line of Equation 5.13). This models the fact that

both b3 and ϕ∗(b3) are dummy features (with zero persistence) and that

their ground distance, which is arbitrary, should not be taken into account

in WT2 (B, B̂). Therefore, we simply remove b3 from B and ϕ∗(b3) from B̂.

This removal discards this first line of Equation 5.13, which can then be

re-written in the general form:

WT2 (B, B̂)2 =
|B|

∑
i=1
||bi − ϕ∗(bi)||22. (5.14)

Then, with this removal, the diagonal-diagonal assignments do not con-

stitute a special case anymore.

Case (4): An off-diagonal branch b4 ∈ B is mapped to a diagonal branch

ϕ∗(b4) ∈ B̂. In that case, b4 turns out to be an augmented point of B. In Fig-

ure 5.6, these are reported with circles while original (i.e. non-augmented)

points are reported with dots. Specifically, b4 has been precisely inserted

such that b4 = ∆
(
ϕ∗(b4)

)
:

(b4)x = (b4)y =
1
2

((
ϕ∗(b4)

)
x +

(
ϕ∗(b4)

)
y

)
.
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Given Equation 5.12, ϕ∗(b4) can be re-written as:

ϕ∗(b4) = o4 + B(O)α,

where o4 is a branch of O. Then, the birth/death values of b4 are:

(b4)x = (b4)y = 1
2

((
o4 + B(O)α

)
x +

(
o4 + B(O)α

)
y

)
(b4)x = (b4)y = 1

2

(
(o4)x + (o4)y

)
+ 1

2

((
B(O)α

)
x +

(
B(O)α

)
y

)
.

Then, it follows that b4 can be re-written as:

b4 = ∆(o4) + ∆
(

B(O)α
)
. (5.15)

From Equation 5.15, it is clear that the coordinates of b4 are dependent on

α. In short, this is due to the fact that b4 has been purposely inserted in

B as the diagonal projection of a branch of B̂ which, itself, depends on α.

Thus, to account for this special case, we need to further isolate the terms

of Equation 5.15 depending on α (i.e. ∆
(

B(O)), as described next.

Similarly to Section 5.3.2, let B̂′ be a vector representation of B̂. Specif-

ically B̂′ is a vector in R2|B̂| which concatenates the coordinates in the

birth/death plane of each branch bi of B̂. B̂′ can be decomposed into

O′ +
(

B(O′)
)′

α, where
(

B(O′)
)′ is a (2|B̂|)× d′ matrix. Also, let B′ be a

similar vector representation of B, but where the entries have been specif-

ically re-ordered such that, for each of its 2D entries, we have:

(B′)i = ϕ−1
∗
(
(B̂′)i

)
.

Then B′ can be decomposed as a sum of two vectors of R2|B̂|:

B′ = B′1 + B′2,

such that B′1 has all its entries set to 0 except those covered by the above

cases (1) and (2) (Figure 5.6), and that B′2 has all its entries set to 0 except

those covered by the above case (4) (purple, Figure 5.6).

Given Equation 5.15, each non-zero entry i of B′2 can be re-written as:

(B′2)i = ∆(oi) + ∆
(((

B(O)
)′

α
)

i

)
, (5.16)

where oi is the ith entry of O. Then, the vector B′2 can be further decom-

posed as follows:

B′2 = B′3 + B′4,

such that each non-zero entry i of B′3 is equal to ∆(oi) and each non-zero

entry i of B′4 is equal to ∆
(((

B(O)
)′

α
)

i

)
.
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Let B′2 be a (2|B̂|)× d′ matrix such that:

B′4 = B′2α.

At this stage, we have:

B′ = B′1 + B′3 + B′4 = B′1 + B′3 + B′2α. (5.17)

At this point, we managed to isolate the terms in B′ which are dependent

on α (i.e. B′2α). Then, similarly to Section 5.3.2, for a fixed optimal as-

signment ϕ∗, the Wasserstein distance WT2 (B, B̂) can be re-written as an

L2 norm:

WT2 (B, B̂)2 = ||B′ − B̂′||22.

Then, given ϕ∗, by using Equation 5.17, the optimal α∗ ∈ Rd′ are:

α∗ = arg minα ||B′ − B̂′||22
α∗ = arg minα ||B′1 + B′3 + B′2α−

(
O′ +

(
B(O′)

)′
α
)
||22

α∗ = arg minα ||B′1 + B′3 −O′ −
(((

B(O′)
)′ − B′2

)
α

)
||22.

Then, similarly to the Euclidean case (Equation 5.2), it follows then that α∗

can be expressed as a function of the pseudoinverse of
((

B(O′)
)′ − B′2

)
:

α∗ =
((

B(O′)
)′ − B′2

)+
(B′1 + B′3 −O′). (5.18)

In short, the general expression of the optimal coefficients α∗ (Equa-

tion 5.18) is a generalization of Equation 5.11, such that the branches of B
dependent on α (case (4)) have been integrated within the pseudoinverse

operation.

5.3.4 Initialization

Now that we have introduced the core low-level procedure of our ap-

proach (Section 5.3.2), we can detail the initialization step of our frame-

work, which consists in identifying a relevant initial value for the overall

optimization variable θ (line 4, Algorithm 2). The BDT transformation

layers Πk are initialized one after the other, i.e. for increasing values of k.

(1) Input initialization: For each BDT transformation layer Πk, its input

origin Oin
k is initialized as the Wasserstein barycenter B∗ [PVDT22] of the

BDTs on its input. Next, the first vector of Bin
k , is given by the optimal

assignment (w.r.t. Equation 2.3) between Oin
k and the layer’s input BDT B
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which maximizes WT2 (Oin
k ,B), i.e. which induces the worst projection er-

ror e(B) (Equation 5.5) given an empty basis. Next, the remaining (dk− 1)

vectors of Bin
k are initialized one after the other, by including at each step

the vector formed by the optimal assignment between Oin
k and the layer’s

input BDT B which induces the maximum projection error e(B) (Equa-

tion 5.5), given the already initialized vectors. Note that this step makes

an extensive usage of the projection procedure introduced in Section 5.3.2.

Finally, if the dimension dk of Πk is greater than the number of input BDTs,

the remaining vectors are initialized randomly, with a controlled norm (set

to the mean of the already initialized vectors).

(2) Output initialization: For each BDT transformation layer Πk, its out-

put origin Oout
k and basis Bout

k are initialized as random linear transforma-

tions of its input origin and basis. Specifically, let W be a random matrix

of size (2|Oout
k | × 2|Oin

k |). Given the vector representation Oin
k
′ of Oin

k (see

Section 5.3.2), we initialize Oout
k such that: Oout

k
′ ← WOin

k
′. Similarly, the

output basis of Πk is initialized such that: Bout
k
′ ←WBin

k
′.

5.3.5 Forward Propagation

Algorithm 3 presents the main steps of our forward propagation.

Algorithm 3 Forward propagation in our Wasserstein Auto-Encoder.
Input1: Set of input BDTs SB = {B( f1), . . . ,B( fN)}.
Input2: Current value of the overall optimization variable θ.

Output: Set of reconstructed BDTs ŜB = {B̂( f1), . . . , B̂( fN)}.

1: for B ∈ SB do

2: B0 ← B.

3: // For each BDT transformation layer Πk.

4: for k ∈ {1, 2, . . . , ne + nd} do

5: // Section 5.3.2 and Section 5.3.3.

6: ψin
k (Bk−1)←basisProjection(Bk−1,Oin

k , Bin
k ).

7: // Section 5.2.2.

8: Ψin
k (Bk−1)← σ

(
ψin

k (Bk−1)
)
.

9: Bk ← Ψout
k

(
Ψin

k (Bk−1)
)
= γ

(
Oout

k + Bout
k (Oout

k )Ψin
k (Bk−1)

)
.

10: end for

11: ŜB ← ŜB ∪ Bne+nd

12: end for
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This procedure follows directly from our formulation (Section 5.2.2).

Each input BDT B ∈ SB is processed independently (line 1). Specifically,

B will traverse the network one layer Πk at a time (line 4). Within each

layer Πk, the projection through the input sub-layer Ψin
k is computed (line

8) by composing a non-linearity σ with the basis projection (Section 5.2.2).

This yields a set of coefficients representing the input BDT. Next, follow-

ing Section 5.2.2, these coefficients are transformed back into a valid BDT

with the output sub-layer (line 9). At the end of this process, a set of

reconstructed BDTs ŜB is available, for a fixed value of θ.

5.3.6 Backward Propagation

Given the set of reconstructed BDTs ŜB for the current value of θ (Sec-

tion 5.3.5), the data fitting energy (Equation 5.7) is evaluated. Specifically,

for each input BDT B ∈ SB , the optimal assignment ϕ∗ w.r.t. Equation 2.3

is computed between B and its reconstruction, Bne+nd , provided on the

output of the network. Next, similarly to Section 5.3.2 for basis projec-

tions, the vector representation B′ of B is constructed and re-ordered such

that the ith entry of this vector corresponds to the pre-image by ϕ∗ of the

ith entry of B′ne+nd
(c.f. Equation 5.16). Then, given the optimal assign-

ment ϕ∗, similarly to Section 5.3.2, WT2 (B,Bne+nd) can be expressed as an

L2 norm (Equation 5.10). Given the set Φ∗ of all the optimal assignments

between the input BDTs and their output reconstructions, EWT2
(θ) is then

evaluated:

EWT2
(θ) =

N

∑
i=1
||B( fi)

′ −Bne+nd( fi)
′||22. (5.19)

At this stage, for a given set Φ∗ of optimal assignments, the evaluation

of Equation 5.19 only involves basic operations (as described in the pre-

vious sections: vector re-orderings, pseudoinverse computations, linear

transformations, and compositions). All these operations are supported

by the automatic differentiation capabilities of modern neural frameworks

(in our case PyTorch [PGM+
19]), enabling the automatic estimation of

∇EWT2
(θ). Then, θ is updated by gradient descent [KB15].

Our overall optimization algorithm (Algorithm 2) can be interpreted as

a global instance of an Assignment/Update strategy. Each backward prop-

agation updates the overall variable θ to improve the data fitting energy

(Equation 5.7), while the next forward propagation improves the network

outputs and hence their assignments to the inputs. In the remainder, the
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terms PD-WAE and MT-WAE refer to the usage of our framework with

persistence diagrams or merge trees respectively.

5.3.7 Computational Parameters

The Wasserstein distance WT2 is subject to three parameters (ϵ1, ϵ2 and ϵ3,

Section B.1), for which we use the recommended default values (ϵ1 = 0.05,

ϵ2 = 0.95, ϵ3 = 0.9, Section B.1) when considering merge trees (MT-WAE).

In contrast, when considering persistence diagrams, we switch ϵ1 to 1 (ϵ2

and ϵ3 do not have any effect then) and WT2 becomes equivalent to WD2 (see

Chapter 3 or Section B.1). Then our framework computes a Wasserstein

Auto-Encoder of extremum persistence diagrams (PD-WAE for short).

Our main algorithm is subject to meta-parameters. nit stands for the

number of iterations in our basis projection procedure (Section 5.3.2). In

practice, we set nit = 2.

The number, size and dimensionality of the layers of our MT-WAE

are also meta-parameters. Unless specified otherwise, we use only one

encoding layer and one decoding layer, i.e. ne = nd = 1, with dne = 2 (for

dimensionality reduction purposes) and dne+nd = 16. For data reduction

purposes and computational cost control, we also restrict the size of the

origins and bases of the sub-layers of our network. Let |SB | be the total

number of branches in the ensemble, i.e. |SB | = ∑N
i=1 |B( fi)|. We restrict

the maximum size of the following origins as follows: |Oin
1 | ≤ 0.2|SB |,

|Oout
1 | ≤ 0.1|SB |, |Oin

2 | ≤ 0.1|SB |, |Oout
2 | ≤ 0.2|SB |. This origin size control

also implicitly restricts the size of the corresponding bases. Overall, when

integrating all these constraints, the number of variables in our networks

is bounded by
(
(dne + 1)× 2× (0.2 + 0.1) + (dnd + 1)× 2× (0.1 + 0.2)

)
×

|SB | = 12|SB |. In practice, our networks optimized 68, 902 variables on

average (per ensemble).

5.4 Applications

This section illustrates the utility of our framework in concrete visualiza-

tion tasks: data reduction and dimensionality reduction. These applica-

tions and use-cases are adapted from Chapter 4, to facilitate comparisons

between previous work on the linear encoding of topological descriptors

Chapter 4 and our novel non-linear framework.
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5.4.1 Data Reduction

As discussed in Chapter 4, like any data representation, merge trees can

benefit from lossy compression. For example, for the in-situ analysis of

high-performance simulations [ABG+
15], each individual time-step of the

simulation can be represented and stored to disk in the form of a topo-

logical descriptor [BNP+
21]. In this context, this lossy compression eases

the manipulation of the generated ensemble of topological descriptors (i.e.

it facilitates its storage and transfer). Previous work has investigated the

reduction of an ensemble of merge trees via linear encoding (Chapter 4).

In this section, we improve this application by extending it to non-linear

encoding, thereby enabling more accurate data reductions. Specifically,

the input ensemble SB of BDTs is compressed, by only storing to disk:

(1) the output sub-layer of the last decoding layer of the network, noted

Ψout
ne+nd

(i.e. its origin, Oout
ne+nd

, as well as its basis, Bout
ne+nd

(Oout
ne+nd

))

(2) the corresponding N BDT coefficients αi
ne+nd

∈ Rdne+nd .

Note that an alternative reduction strategy would consist in storing

the N BDT coefficients in latent space directly (i.e. αi
ne
∈ Rdne ), which

would be typically more compact than the N BDT coefficients in the last

output sub-layer (αi
ne+nd

∈ Rdne+nd ). However, in order to decompress

this representation, one would need to store to disk the entire set of nd

decoding layers. This significant overhead would only be compensated

for ensembles counting an extremely large number N of members. In

our experiments (Section 5.5), N = 48 for the largest ensemble. Thus, we

Figure 5.7 – Application of our data reduction approach to feature tracking (experiment

adapted from Chapter 3 and Chapter 4 for comparison purposes). The 5 most persistent

maxima (spheres) of three time steps (ion density during universe formation [Org04])

are tracked through time (left, f1, f2 and f3) by considering the optimal assignment

(Equation 2.3) between the corresponding merge trees (inset, left). The same tracking

procedure is applied to the merge trees compressed by WAE (inset, right). Similarly to

PGA Chapter 4, the resulting tracking is identical with the compressed trees. However,

in comparison to PGA Chapter 4, for a target compression factor of 13.44, the relative

reconstruction error (right) is clearly improved with WAE.
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Figure 5.8 – Application of our data reduction approach to topological clustering (exper-

iment adapted from Chapter 3 and Chapter 4 for comparison purposes). The ensemble is

clustered (Chapter 3) based on the merge trees (top left insets) of the ensemble members

(each column represents a member from one of the 4 clusters). The same clustering pro-

cedure (Chapter 3) is applied to the merge trees compressed by WAE (top right insets).

Similarly to PGA (Chapter 4), the resulting clustering is identical with the compressed

trees (it exactly matches the ground-truth classification, see Appendix A). However, in

comparison to PGA (Chapter 4), for a target compression factor of 15.09, the relative

reconstruction error (top) is clearly improved with WAE. Visually, the compressed trees

look very similar to the original ones: the prominent features (in colors, non-prominent

features are shown with small white nodes) are well preserved in terms of number and

persistence. The same holds for the compressed BDTs (bottom right insets) which are

nearly isomorphic to the original BDTs (bottom left insets, the color shows the assign-

ment between the original and compressed BDTs).

focus on the first strategy described above (storing potentially larger sets

of coefficients, but a smaller number of decoding layers).

The compression factor can be controlled with two input parameters:

(i) dne+nd controls the dimensionality of the last decoding layer (hence its

ability to capture small variabilities) and (ii) |Oout
ne+nd

| controls the size of

the origin of the last decoding sub-layer (hence its ability to capture small

features). The resulting reconstruction error (Equation 5.7) will be mini-

mized for large values of both parameters, while the compression factor

will be minimized for low values. In the following experiments, we set

both parameters to their default values (Section B.1). To decompress a

BDT B( fi), its stored coefficients αi
ne+nd

are simply propagated through

the stored output sub-layer of the network, Ψout
ne+nd

.

Figure 5.7 and Figure 5.8 show two examples of visualization tasks

(feature tracking and ensemble clustering, use cases replicated from Chap-

ter 3 and Chapter 4 for comparison purposes). In these experiments, the
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BDTs have been compressed with the strategy described above. Next,

the de-compressed BDTs have been used as an input to these two analy-

sis pipelines. In both cases, the output obtained with the de-compressed

BDTs is identical to the output obtained with the original BDTs. This shows

the viability of the de-compressed BDTs and it demonstrates the utility of

this reduction scheme.

Table 5.1 and Table 5.2 report a comparison between the reconstruction

error generated by our Wasserstein Auto-Encoder (WAE) approach and

the Principal Geodesic Analysis (PGA) approach of Chapter 4, for the ap-

plication to data reduction, in the case of persistence diagrams (Table 5.1)

and merge trees (Table 5.2).

Specifically, we compute the reconstruction error of each input BDT

B( fi) via the distance WT2 to its reconstruction (computed by the method

under consideration, PGA or WAE). To be comparable across ensembles,

this distance is then divided by the maximum WT2 distance observed

among two input BDTs in the ensemble. Finally, this relative reconstruction

error is averaged over all the BDTs of the ensemble.

To enable a fair comparison, we set the number of axis of PGA, noted

dmax, to 3 (as reported in the original data reduction description in Sec-

tion 4.4.1) and we set the number of dimensions in the latent space of

WAE to the same value (i.e. dne = 3). We also set the maximum size of

the PGA origin, noted N1, to 0.1|SB |, where |SB | is the total number of

Table 5.1 – Comparison of the Average Relative Reconstruction (ARR) Error (rounded to

two decimal after the point), between PD-PGA (Chapter 4) (dmax = 3 and N1 ≤ 0.1|SB |)
and our approach PD-WAE (dne = 3 and |Oout

ne | ≤ 0.1|SB | ), for identical compression

factors. Bold numbers in the Ratio column indicate instances where PD-WAE achieved

a lower (hence better) reconstruction error.

Dataset N |B| Compression ARR Error Ratio

Factor PD-PGA (Chapter 4) PD-WAE

Asteroid Impact (3D) 7 1,295 7.36 0.01 0.01 0.73

Cloud processes (2D) 12 1,209 7.99 0.12 0.10 0.81

Viscous fingering (3D) 15 118 7.87 0.02 0.01 0.67

Dark matter (3D) 40 316 8.68 0.01 4e-03 0.39

Volcanic eruptions (2D) 12 811 7.56 0.02 0.01 0.36

Ionization front (2D) 16 135 8.01 0.03 0.02 0.69

Ionization front (3D) 16 763 7.68 0.05 0.03 0.65

Earthquake (3D) 12 1,203 7.59 0.04 0.02 0.51

Isabel (3D) 12 1,338 7.58 0.08 0.08 0.91

Starting Vortex (2D) 12 124 7.39 0.01 3e-03 0.51

Sea Surface Height (2D) 48 1,787 24.66 0.16 0.16 1.02

Vortex Street (2D) 45 23 15.83 2e-03 9e-04 0.40
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Table 5.2 – Comparison of the Average Relative Reconstruction (ARR) Error (rounded

to two decimal after the point), between MT-PGA (Chapter 4) (dmax = 3 and N1 ≤
0.1|SB |) and our approach MT-WAE (dne = 3 and |Oout

ne | ≤ 0.1|SB | ), for identical

compression factors. Bold numbers in the Ratio column indicate instances where MT-

WAE achieved a lower (hence better) reconstruction error.

Dataset N |B| Compression ARR Error Ratio

Factor MT-PGA (Chapter 4) MT-WAE

Asteroid Impact (3D) 7 1,295 13.68 0.13 0.12 0.93

Cloud processes (2D) 12 1,209 13.84 2e-04 7e-07 3e-03

Viscous fingering (3D) 15 118 13.21 8e-04 7e-07 8e-04

Dark matter (3D) 40 316 15.09 2e-04 2e-05 0.08

Volcanic eruptions (2D) 12 811 13.83 0.01 2e-03 0.41

Ionization front (2D) 16 135 13.44 0.19 0.14 0.78

Ionization front (3D) 16 763 13.89 0.24 0.22 0.92

Earthquake (3D) 12 1,203 14.07 0.14 0.10 0.75

Isabel (3D) 12 1,338 14.03 3e-03 2e-03 0.72

Starting Vortex (2D) 12 124 11.92 2e-04 2e-06 0.01

Sea Surface Height (2D) 48 1,787 14.36 0.23 0.22 0.92

Vortex Street (2D) 45 23 20.27 3e-04 9e-05 0.26

branches in the ensemble, i.e. |SB | = ∑N
i=1 |B( fi)|. Similarly, for WAE, we

set the maximum size of the latent output origin |Oout
ne
| to 0.1|SB |.

For both methods (PGA and WAE), the compression factor is fixed to

a common value on a per ensemble basis. The compression factor of WAE

is controlled by adjusting, for the last decoding layer, its dimensionality

noted dne+nd , and the maximum size of its output origin, noted |Oout
ne+nd

|.
Both tables show that WAE clearly outperforms PGA (Chapter 4) in

terms of average relative reconstruction error, with an average improve-

ment of 37% for persistence diagrams, and 52% for merge trees.

Finally, note that for each ensemble, the merge tree based clustering

(Chapter 3) computed from the input BDTs is strictly identical to the clus-

tering computed from the reconstructed BDTs. This confirms the viability

of our reconstructed BDTs, and their usability for typical visualization and

analysis tasks.

5.4.2 Dimensionality Reduction

This section describes how to use MT-WAE to generate 2D layouts of

the ensemble, for the global visual inspection of the ensemble. This is

achieved by setting dne = 2 and by embedding each BDT B( fi) as a point

in the plane, at its latent coordinates (αi
ne
)1 and (αi

ne
)2. This results in

a summarization view of the ensemble, grouping similar BDTs together

(Figure 5.1c). The flexibility of our framework allows to further improve
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the quality of this 2D layout. Specifically, we introduce two penalty terms

aiming at (1) improving the preservation of the Wasserstein metric WT2
and (2) improving the preservation of the clusters of BDTs.

(1) Metric preservation: In order to improve the preservation of the

Wasserstein metric WT2 in the latent space, and hence in the 2D layout,

we introduce the following penalty term PM(θ):

PM(θ) = ∑
∀i∈{1,...,N}

∑
∀j ̸=i∈{1,...,N}

(
WT2

(
B( fi),B( f j)

)
− ||αi

ne
− α

j
ne ||2

)2
.

Concretely, given two BDTs B( fi) and B( f j), PM(θ) penalizes the vari-

ations between their Wasserstein distances and the Euclidean distances

between their coordinates αi
ne

and α
j
ne in the latent space.

The integration of the penalty term PM(θ) in our optimization al-

gorithm (Section 5.3) is straightforward. The Wasserstein distance ma-

trix, which stores at its entry (i, j) the distance WT2
(
B( fi),B( f j)

)
, is com-

puted in a pre-processing stage. Since this matrix is a constant during

the optimization, the expression of PM(θ) only involves basic operations

supported by automatic differentiation. Then, given a blending weight

λM ∈ [0, 1] (in practice, we set λM = 1), the penalty term λMPM(θ) is sim-

ply added to the expression of the reconstruction energy EWT2
(θ) (Equa-

tion 5.19). Next, the corresponding gradient is evaluated by automatic

differentiation and the overall energy is optimized by gradient descent

[KB15] , as originally described in Section 5.3.6.

(2) Clusters preservation: We introduce an additional penalty term to

improve the preservation of the natural clusters of BDTs in the latent space,

and hence in the 2D layout. Let C ∈ RkN be the vector modeling the

input k clusters: the entry (ik) + j of this vector is equal to 1 if the BDT

B( fi) belongs to the cluster j, 0 otherwise. This input clustering vector

can be provided either by a pre-defined ground-truth, by interactive user

inputs or by any automatic clustering algorithm. In our experiments, to

construct this vector C, we used the extension of the k-means clustering to

the Wasserstein metric space of merge trees (Chapter 3). Next, in the latent

space, we consider the classic k-means algorithm [Elk03, CKV13], where

each BDT B( fi) is clustered according to its latent coordinates αi
ne
∈ R2.

This yields a set of k centroids in the 2D latent space cl ∈ R2 with l ∈
{0, 1, . . . , k− 1}. To evaluate the similarity between this clustering and the

input clustering vector C, we use the celebrated SoftMax function [GBC16].
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Specifically, we consider the latent clustering vector C′ ∈ RkN , such that the

entry (C′)(ik)+j denotes the probability that the 2D point αi
ne

belongs to the

cluster j (β is set to 5):

(C′)(ik)+j =
e−β||αi

ne−cj||2

∑k−1
l=0 e−β||αi

ne−cl ||2
.

Then, the clustering penalty term PC(θ) is given by the Kullback-Leibler

divergence (a standard indicator for probability similarity):

PC(θ) = KL(C, C′) =
kN−1

∑
i=0

C(i)log
( C(i)

C′(i)

)
.

Similarly to the metric penalty term, given a blending weight λC ∈ [0, 1]

(in practice, we set λC = 1), the penalty term λCPC(θ) is added to the

expression of the reconstruction energy EWT2
(θ) (Equation 5.19). The

corresponding gradient is estimated by automatic differentiation and the

overall energy is optimized by gradient descent [KB15], as originally

described in Section 5.3.6.

We augment our 2D layouts with Persistence Correlation Views (PCV)

which were introduced in Chapter 4. In short, the PCV embeds a branch

b of the barycenter B∗ (Chapter 3) as a point in 2D, in order to represent

the variability of the corresponding feature in the ensemble, as a function

of the coordinates in latent space. Specifically, the optimal assignments

ϕ∗i between B∗ and each input BDT B( fi) is first computed (Equation 2.3).

Next, for a given branch b ∈ B∗, the Pearson correlation ρ
(

pbi , (α
i
ne
)1
)

be-

tween the persistence pbi of ϕ∗i(b) ∈ B( fi) and the first coordinate in latent

space (αi
ne
)1 is computed for the ensemble (i.e. for i ∈ {1, 2, . . . , N}). Next,

the Pearson correlation ρ
(

pbi , (α
i
ne
)2
)

is computed similarly with regard to

the second coordinate in latent space (αi
ne
)2. Finally, b is embedded in the

PCV at the coordinates
(

ρ
(

pbi , (α
i
ne
)1
)
, ρ
(

pbi , (α
i
ne
)2
))

. To avoid clutter in

the visualization, we only report the most persistent branches of B∗ in the

PCV. Intuitively, points in the PCV which are located far away from the

center, along a given direction, indicate a strong correlation between that

direction in latent space, and the persistence of the corresponding feature

in the ensemble.

PCVs enable the identification of patterns of feature variability within

the ensemble, as discussed in Figure 5.9. This case study considers the

Isabel ensemble, which consists of 12 scalar fields representing the wind

velocity magnitude in a hurricane simulation. The ensemble comes with

a ground-truth classification (Appendix A): 4 members correspond to the



146 Chapter 5. Wasserstein Auto-Encoders of Merge Trees and Persistence Diagrams

Figure 5.9 – Visual analysis of the Isabel ensemble (one member per ground-truth class, top), with PD-WAE (in this example,

ne = nd = 2). Our work enables data reduction, while providing reconstructed diagrams
(
(a), top insets

)
which are highly

similar to the input (below). The 2D layout generated by PD-WAE (b) recovers the temporal structure of the ensemble (the

clusters are aligned in chronological order, from dark red to light pink). The PCV (grey inset) indicates that the peripheral

gusts of wind in the data (white, black and cyan spheres) grow in importance when moving towards the bottom right corner

of the latent space (their persistence increases over time). In contrast, the hurricane eye (light blue) exhibits less variability,

but with stronger values towards the top left corner of the latent space (start of the sequence). The aggregated views (bottom,

overlapping all diagrams, transparent: barycenter) for the input (c) and the latent space (d) show that PD-WAE nicely

recovers a per-feature parameterization in the latent space (one ellipse per barycenter feature), which is locally consistent with

the data temporal evolution (cluster color).

formation of the hurricane (e.g. f1, Figure 5.9), 4 other members to its

drift (e.g. f2, Figure 5.9) and 4 other members to its landfall (e.g. f3, Fig-

ure 5.9). For this ensemble, our PD-WAE approach produces a 2D layout(
Figure 5.9b

)
which manages to recover the temporal coherency of the

ensemble: the formation (dark red), drift (pink) and landfall (light pink)

clusters are arranged in order along a line
(
direction (1,−1)

)
. This shows

the ability of PD-WAE to recover the intrinsic structure of the ensemble

(here its temporal nature). The PCV (grey inset) further helps appreciate

the variability of the features in the ensemble. There, each colored point

indicates a persistent feature of the barycenter: the eye of the hurricane

is represented by the blue sphere, while the cyan, black and white sphere

represent peripheral gusts of wind
(
see the matching features in the data,

Figure 5.9a
)
. The PCV clearly identifies two patterns of feature variability,

along the direction (1,−1), which coincides with the temporal alignment
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of the clusters in latent space. Specifically, it indicates that the persis-

tence of the hurricane eye will be larger in the top left corner of the latent

space, i.e. towards the beginning of the temporal sequence (dark red clus-

ter). This is confirmed visually when inspecting the persistence diagrams

of the individual members (the blue feature is less persistent in D( f3)

than in D( f1) and D( f2)). In short, this visually encodes the fact that the

strength of the hurricane eye decreases with time. In contrast, the features

corresponding to peripheral wind gusts (cyan, black and white spheres)

exhibit a common variability pattern, distinct form that of the hurricane

eye: the persistence of the corresponding features increases as one moves

along the direction (1,−1) in latent space, i.e. as time increases (pink and

light pink clusters). This is confirmed visually in the individual members,

where the persistence of these features is larger in D( f3) than in D( f1)

and D( f2). In short, this visually encodes the fact that the strength of the

peripheral wind gusts increases with time. Overall, while the 2D layout

generated by PD-WAE enables the visualization of the intrinsic structure

of the ensemble (here, its temporal nature), the PCV enables the visualiza-

tion and interpretation of the variability in the ensemble at a feature level.

The caption of Figure 5.1 includes a similar discussion for MT-WAE.

Figure 5.10 provides a qualitative comparison of the 2D layouts and

Persistence Correlation Views (PCVs) between PD-PGA (Chapter 4) and

our novel non-linear framework, PD-WAE (see Section 5.5.2 for an exten-

sive quantitative comparison). Specifically, it shows that, while PD-PGA(
Figure 5.10a

)
manages to isolate the clusters well, its 2D layout does not

recover the intrinsic, one-dimensional, temporal structure of the ensem-

ble. In contrast, as discussed above, PD-WAE
(
Figure 5.10b

)
manages

to recover this intrinsic structure and produces a linear alignment of the

clusters along the direction (1,−1), in order of their temporal appearance.

Figure 5.10 – Qualitative comparison of the 2D layouts (left, white inset) and PCVs

(right, grey inset) between PD-PGA (Chapter 4) (a) and PD-WAE (b) for the Isabel

ensemble. PD-WAE manages to recover the intrinsic temporal structure of the ensemble

and produces a linear alignment of the clusters in order of temporal appearance (dark red,

pink, light pink).
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This alignment greatly facilitates the interpretation of the PCV, since time

is now visually encoded there by the linear direction (1,−1)
)

(whereas it

would be encoded by a curve in the case of PD-PGA).

In contrast to traditional auto-encoders, our approach maintains topo-

logical descriptors throughout the network. This results in an improved

interpretability and enables new visual capabilities:

(1) Latent feature transformation: As discussed in Figure 5.9, it is now

possible to visualize how topological descriptors are (non-linearly) trans-

formed by the auto-encoder. Specifically, the aggregated views of the

birth/death space (bottom) illustrates how PD-WAE unwraps the diagrams

in latent space, nicely recovering the data temporal evolution at a feature

level (see the temporally consistent linear arrangements of points for each

barycenter feature in Figure 5.9d, from dark red to pink and light pink).

(2) Latent space navigation: Given a point in latent space, it is now possi-

ble to efficiently reconstruct its BDT/MT by propagating its latent coordi-

nates through the decoding layers, enabling an interactive exploration of

the merge tree latent space (Figure 5.1d).

(3) Feature traversal analysis: For each consecutive layers Πk and Πk+1,

we compute the optimal assignment (Equation 2.3) between their input

origins, Oin
k and Oin

k+1. Next, we compute the optimal assignment be-

tween the barycenter B∗ (Chapter 3) of the input ensemble and the first

origin Oin
1 . This yields an explicit tracking of each branch b of B∗ down

to the latent space. We introduce the notion of Feature Latent Importance

(FLI), given by the persistence of b in latent space, divided by its original

persistence. FLI indicates if a feature gains (or looses) importance in la-

tent space. This enables the identification of the most informative features

in the ensemble.

This is illustrated in Figure 5.1e, where the cyan, white, dark blue and

black features exhibit large FLI values (red circles). In the trees, these

features are indeed present in most of the ensemble
(
Figure 5.1d

)
, with

only moderate variations in persistence. Interestingly, the global maxi-

mum of seismic wave (light blue feature) is not a very informative feature

(light blue circle): while it is also present throughout the sequence, its per-

sistence decreases significantly (left to right). This visually encodes that,

as the seismic wave travels from the epicenter, the strength of its global
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maximum is no longer significant in front of other local maxima (which

illustrates the energy diffusion process).

5.5 Results

This section presents experimental results obtained on a computer with

two Xeon CPUs (3.2 GHz, 2x10 cores, 96GB of RAM). The input merge

trees were computed with FTM [GFJT19a] and pre-processed to discard

noisy features (persistence simplification threshold: 0.25% of the data

range). We implemented our approach in C++ (with OpenMP and Py-

Torch’s C++ API [PGM+
19]), as modules for TTK [TFL+

17, BMBF+
19].

Experiments were performed on a set of 12 public ensembles described

in Appendix A, which includes a variety of simulated and acquired 2D

and 3D ensembles extracted from previous work and past SciVis contests

[Org04].

5.5.1 Time Performance

The Wasserstein distance computation (Equation 2.3) is the most expensive

sub-procedure of our approach. It intervenes during energy evaluation

(Section 5.3.6) but also at each iteration of basis projection (Section 5.3.2),

itself occuring at each propagation iteration (Section 5.3.5), for each in-

put BDT. To compute this distance, we use a fine-grain task-based parallel

algorithm (Chapter 3). We leverage further parallelism to accelerate the

process. Specifically, for each input BDT, its forward propagation (Sec-

tion 5.3.5) can be run in a distinct parallel task. Similarly, when evaluating

Table 5.3 – Running times (in seconds) of our algorithm for PD-WAE and MT-WAE

computation (first sequential, then with 20 cores).

Dataset N |B| PD-WAE MT-WAE

1 c. 20 c. Speedup 1 c. 20 c. Speedup

Asteroid Impact (3D) 7 1,295 2,819.38 989.42 2.85 5,946.81 1,522.89 3.90

Cloud processes (2D) 12 1,209 11,043.20 1,318.63 8.37 16,150.90 2,566.98 6.29

Viscous fingering (3D) 15 118 1,345.31 268.78 5.01 3,727.64 417.31 8.93

Dark matter (3D) 40 316 125,724.00 10,141.30 12.40 135,962.00 8,051.02 16.89

Volcanic eruptions (2D) 12 811 4,925.15 638.58 7.71 4,151.04 449.14 9.24

Ionization front (2D) 16 135 627.04 95.31 6.58 1,140.44 144.57 7.89

Ionization front (3D) 16 763 17,285.10 1,757.71 9.83 101,788.00 5,350.46 19.02

Earthquake (3D) 12 1,203 14,272.10 2,074.52 6.88 9,888.68 1,024.45 9.65

Isabel (3D) 12 1,338 3,485.03 436.56 7.98 23,240.90 1,669.20 13.92

Starting Vortex (2D) 12 124 215.46 95.45 2.26 281.80 147.51 1.91

Sea Surface Height (2D) 48 1,787 41,854.70 2,901.39 14.43 222,594.00 13,540.20 16.44

Vortex Street (2D) 45 23 460.46 152.35 3.02 117.88 38.88 3.03
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the overall energy (Section 5.3.6), the distance between an input BDT and

its output reconstruction is computed in a distinct parallel task for each

BDT. Table 5.3 evaluates the time performance of our framework for per-

sistence diagrams (PD-WAE) and merge trees (MT-WAE). In sequential

mode, the computation time is a function of the ensemble size (N) and

the tree sizes (|B|). In parallel, the iterative nature of our approach (Algo-

rithm 2) challenges parallel efficiency. However, timings are still improved

after parallelization (orders of minutes on average), with a very good par-

allel efficiency for the largest ensembles.

5.5.2 Framework Quality

Figure 5.7 and Figure 5.8 report compression factors for our application

to data reduction (Section 5.4.1). These are ratios between the storage

size of the input N BDTs and that of their compressed form. For a fixed

target compression factor, WAE clearly improves the reconstruction error

over linear encoding (PGA, Chapter 4). Table 5.1 and Table 5.2 extend

this error comparison to all our test ensembles, and shows that, for identi-

cal compression factors, our framework improves the reconstruction error

over PGA (Chapter 4) by 37% for persistence diagrams, and 52% for merge

trees, hence confirming the accuracy superiority of WAE over PGA.

Figure 5.11 provides a visual comparison for the planar layouts gener-

ated by a selection of typical dimensionality reduction techniques, applied

on the input merge tree ensemble (i.e. each point is a merge tree). This ex-

periment is adapted from Chapter 4 for comparison purposes. This figure

reports quantitative scores. For a given technique, to quantify its ability to

preserve the structure of the ensemble, we run k-means in the 2D layouts

and evaluate the quality of the resulting clustering (given the ground-

truth, Appendix A) with the normalized mutual information (NMI) and

adjusted rand index (ARI). To quantify its ability to preserve the geometry

of the ensemble, we report the metric similarity indicator SIM Chapter 4,

which evaluates the preservation of the Wasserstein metric WT2 . All these

scores vary between 0 and 1, with 1 being optimal.

MDS [KW78] and t-SNE [vdMH08] have been applied on the distance

matrix of the input merge trees (Wasserstein distance, Equation 2.3, de-

fault parameters, Section B.1). By design, MDS preserves well the metric

WT2 (good SIM), at the expense of mixing ground-truth classes together

(low NMI/ARI). t-SNE behaves symmetrically (higher NMI/ARI, lower

SIM). We applied PGA (Chapter 4) by setting the origin size parameter to
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Figure 5.11 – Comparison of planar layouts for typical dimensionality reduction techniques, on two merge tree ensembles. The color

encodes the classification ground-truth (Appendix A). For each quality score, the best value appears bold and the rank of the score is

shown in parenthesis. This experimental protocol is adapted from Chapter 4 for comparison purposes.

a value compatible to our latent space (0.1|SB |, Section 5.3.7). As expected,

PGA provides a trade-off between the extreme behaviors of MDS and t-

SNE, with an improved cluster preservation over MDS (NMI/ARI), and

an improved metric preservation over t-SNE (SIM). WAE also constitutes a

trade-off between MDS and t-SNE, but with improved quality scores over

PGA.

We compare our approach to a standard auto-encoder (EAE, Sec-

tion 5.2.1) applied on a vectorization of the input merge trees. Each input

BDT B( fi) is embedded in R2|B∗|, such that the jth entry of this vector cor-

responds to the birth/death location of the branch of B( fi) which maps to

the jth branch of the barycenter B∗ (Chapter 3). Next, we feed these vector-

izations to an EAE, with the same meta-parameters as our approach (i.e.

number of layers, dimensionality per layer). The corresponding results

appear in the VEC-EAE column. Our approach (WAE) outperforms this

straightforward application of EAE, with clearly higher clustering scores

(NMI/ARI) and improved metric scores (SIM).

Figure 5.11 also reports the layouts obtained with our approach after

enabling the metric penalty term (WAE-M), the clustering penalty term

(WAE-C) and both (WAE-MC), c.f. Section 5.4.2. WAE-M (respectively

WAE-C) significantly improves the metric (respectively cluster) preser-

vation over MDS (repectively t-SNE). The combination of the two terms

(WAE-MC) improves both quality scores simultaneously: it outperforms

MDS (SIM) and it improves t-SNE (NMI/ARI). In other words, WAE-MC

improves established methods by outperforming them on their dedicated

criterion (SIM for MDS, NMI/ARI for t-SNE).

Figure 5.13 extends Figure 5.11 to all our test ensembles. It confirms

visually the conclusions of the table of aggregated scores (Table 5.4).
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Figure 5.12 – Comparison of planar layouts for typical dimensionality reduction techniques on the first half of our merge tree

ensembles. The color encodes the classification ground-truth (Appendix A). For each quality score, the best value appears bold and

the rank of the score among all methods is in parenthesis.
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Figure 5.13 – Comparison of planar layouts for typical dimensionality reduction techniques on the second half of our merge tree

ensembles. The color encodes the classification ground-truth (Appendix A). For each quality score, the best value appears bold and

the rank of the score among all methods is in parenthesis.
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Table 5.4 – Comparison of aggregated layout quality scores (i.e. averaged over all

merge tree ensembles, bold: best values). WAE-MC provides both superior metric (SIM)

and cluster (NMI/ARI) preservation to pre-existing techniques (MDS [KW78], t-SNE

[vdMH08], PGA (Chapter 4), VEC-EAE).

Indicator MDS t-SNE PGA VEC-EAE WAE WAE-M WAE-C WAE-MC

NMI 0.78 0.83 0.82 0.71 0.84 0.76 0.96 0.87

ARI 0.68 0.75 0.74 0.55 0.77 0.63 0.95 0.82

SIM 0.86 0.75 0.79 0.74 0.78 0.87 0.78 0.86

In particular, it confirms that WAE behaves as a trade-off between the

respective advantages of standard techniques, such as MDS [KW78] and

t-SNE [vdMH08]. Specifically, MDS is known to preserve the input metric

well, while t-SNE tends to better preserve the global structure of the data

(i.e. the ground-truth classification), at the expense of metric violation.

Our approach (WAE) provides a trade-off between these two extreme be-

haviors: (i) it improves over MDS in terms of structure preservation (it

provides equivalent or better NMI/ARI scores for 11 out of 12 ensembles)

and (ii) it improves over t-SNE in terms of metric preservation (it pro-

vides an equivalent or better SIM score for 9 out of 12 ensembles). WAE

also outperforms VEC-AE and improves PGA on most ensembles. Finally,

the combination of our two penalty terms, WAE-MC, simultaneously out-

performs MDS on metric preservation and t-SNE on cluster preservation

(hence maximizing all criteria at once), for 8 of the 12 ensembles.

Table 5.4 also extends our quantitative analysis to all our test ensem-

bles. It confirms the clear superiority of WAE over VEC-EAE. It also con-

firms that the combination of our penalty terms (WAE-MC) provides the

best metric (SIM) and cluster (NMI/ARI) scores over existing techniques.

Figure 5.14 reports the evolution of the normalized reconstruction er-

ror for PD and MT-WAE computations, for all our test ensembles. As often

Figure 5.14 – Evolution of the normalized reconstruction error along the iterations, for

PD-WAE (left) and MT-WAE (right).
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observed when optimizing neural networks, typical energy oscillations are

present in both cases. However, Figure 5.14 shows that these oscillations

do not prevent the networks to converge (i.e. to reach a state where the

energy decreases by less than 1% between consecutive iterations).

5.5.3 Empirical Stability Evaluation

As documented in Chapter 3 introducing the Wasserstein distance be-

tween merge trees (WT2 ), saddle swap instabilities in the merge trees are

commonly addressed with a saddle-merging pre-processing ([SMKN20] or

Section B.1). This procedure consists in moving each branch b up the

BDT B( f ), if its saddle is too close to that of its parent branch (i.e. closer

in normalized f values than a threshold ϵ1, see Section B.1). As docu-

mented in Chapter 3 with practical stability evaluations (Figure 3.13), this

simple saddle-merging pre-processing drastically improves in practice the

robustness of the metric WT2 to additive noise. Thus, this saddle-merging

pre-processing is of paramount importance for the practical usage of WT2
on real-life datasets and we recommend to use ϵ1 = 0.05 as a default value

(Section B.1). Note that this parameter ϵ1 acts as a control knob, which bal-

ances the practical stability of the metric with its discriminative power (for

ϵ1 = 1, WT2 = WD2 ).

In this section, we study the practical stability of our non-linear frame-

work for merge tree encoding (WAE) to additive noise, in order to docu-

ment the impact of the underlying metric’s stability on the outcome of the

analysis.

Setup

For this experiment, we specifically generated a synthetic ensemble, in

order to control both its intrinsic parameterization and its classification.

For this, we proceeded as follows.

First, four 2D scalar fields (Figure 5.15, top left inset) were generated

by sampling a 2D basis of Gaussian mixtures with controlled parameter-

ization. Specifically, the scalar field being the origin of the basis has two

hills ( f(0,0), dark red frame, top left inset). The extremity of the first (hor-

izontal) axis ( f(1,0), red frame, top left inset) has exactly the same hills,

but with a first additional maximum (cyan sphere). The extremity of the

second (vertical) axis ( f(0,1), pink frame, top left inset) has a second ad-

ditional maximum (white sphere). Finally, the fourth dataset ( f(1,1), light

pink frame, top left inset) has both extra maxima (cyan and white spheres).
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Figure 5.15 – Empirical stability evaluation: a synthetic ensemble of sixteen 2D scalar fields is specifically designed by

sampling a 2D basis of Gaussian mixtures, with a controlled parameterization (see Section 5.5.3 for a detailed specification).

This yields a ground-truth parameterization and classification of the ensemble (four clusters: dark red, red, pink, light pink).

Five versions of this ensemble are created, for increasing levels of additive noise (from ϵ = 0 to ϵ = 0.5, top to bottom). For each

ensemble, a 2D layout is generated by our non-linear framework WAE (right insets), for increasing values of the parameter

ϵ1 from left to right (i.e. from the strict Wasserstein distance between merge trees, WT2 for ϵ1 = 0, to progressive blends

towards the Wasserstein distance between persistence diagrams, WD2 for ϵ1 = 1). In the 2D layout and the quality scores

(bottom curves), a grey background indicates an unstable computation (i.e. NMI and ARI are both below 1). For the default

recommended value of the parameter ϵ1 (0.05, Section B.1), WAE with WT2 recovers well the ground-truth parameterization

and classification (similarly to WD2 ), up to a level of additive noise of ϵ = 0.1. For ϵ1 ≥ 0.1, the 2D layouts generated by

WAE provide a similar level of robustness for WT2 and WD2 (bottom curves).

These Gaussian mixtures were generated by adjusting the height of the

additional maxima (cyan and white spheres, Figure 5.15) such that their

diagrams describe a square on the Wasserstein metric space (see the top

right 2D layout of Figure 5.15):

WD2
(
D( f(0,0),D( f(1,0))

)
= WD2

(
D( f(1,0),D( f(1,1))

)
= WD2

(
D( f(1,1),D( f(0,1))

)
= WD2

(
D( f(0,1),D( f(0,0))

)
= 1,
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and:

WD2
(
D( f(0,0),D( f(1,1))

)
= WD2

(
D( f(1,0),D( f(0,1))

)
=
√

2.

Next, we repeated this square generation process, around each corner

of the above square, but this time with a smaller side length (equal to 0.15

in the Wasserstein metric space, instead of 1).

Overall, this results in a total of 16 scalar fields, specifically organized

along a ground-truth 2-dimensional parameterization of the Wasserstein

metric space, with a natural ground-truth classification (corresponding to

the closest corner of the 2D grid, see the top right 2D layout of Figure 5.15):

• Class 1 (bottom left corner, dark red spheres in Figure 5.15):

– f(0,0), f(0.15,0), f(0.15,0.15), f(0,0.15);

• Class 2 (bottom right corner, red spheres in Figure 5.15):

– f(0.85,0), f(1,0), f(1,0.15), f(0.85,0.15);

• Class 3 (top right corner, light pink spheres in Figure 5.15):

– f(0.85,0.85), f(1,0.85), f(1,1), f(0.85,1);

• Class 4 (top left corner, bright pink spheres in Figure 5.15):

– f(0,0.85), f(0.15,0.85), f(0.15,1), f(0,1);

Given the above ground-truth parameterization, we call the ground-truth

distance matrix, noted D, the matrix defined such that each of its entries

(i, j) is equal to WD2
(
D( fi),D( f j)

)
.

Next, we generated additional versions of the above ensemble, by

introducing a random additive noise in the scalar fields, with a con-

trol on the maximum normalized amplitude ϵ ∈ [0, 1] (i.e. the maxi-

mum amplitude of the noise is a fraction ϵ of the global function range

of the input scalar field). Specifically, we considered the noise levels

ϵ ∈ {0, 0.05, 0.1, 0.2, 0.5}. Overall, this results in 5 ensembles of 16 scalar

fields each.

Protocol

Given the above ensembles, we first consider our non-linear framework

for persistence diagrams, namely PD-WAE. Specifically, we generated, for
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each noise level, a 2D layout of the ensemble with PD-WAE (Section 5.4.2).

This is shown in the rightmost column of Figure 5.15 (ϵ1 = 1). We quan-

titatively evaluate the quality of this 2D layout along two criteria: metric

preservation and cluster preservation.

First, given the 2D layout of the ensemble, we compute a distance ma-

trix D in 2D, which we compare to the ground-truth distance matrix D (see

Section 5.5.3) with the SIM indicator (Chapter 4) (which varies between

0 and 1, 1 being optimal). Second, given the 2D layout of the ensemble,

we compute a k-means clustering in 2D (with k = 4) and we compare the

resulting classification to the ground-truth classification with the NMI and

ARI indicators (which vary between 0 and 1, 1 being optimal).

To study the stability to additive noise of our framework when con-

sidering the Wasserstein distance between merge trees, we have replicated

the above experiment for 5 more values of the control parameter ϵ1 (in

Figure 5.15, from left to right: 0, 0.05, 0.1, 0.2 and 0.5). Overall this results

in the 2D array represented in Figure 5.15 where each column denotes a

specific value of the control parameter ϵ1 and where each line denotes a

specific noise level ϵ.

Analysis

In the absence of noise (ϵ = 0, top row) and for arbitrary values of the

parameter ϵ1, our non-linear WAE framework manages to produce a 2D

layout of the ensemble which is faithful to the ground-truth parameteriza-

tion (high SIM values, bottom curves in Figure 5.15) and which preserves

the ground-truth clusters (colors from dark red to light pink, Figure 5.15,

high NMI/ARI values).

As soon as noise is introduced (ϵ >= 0.05), the strict distance WT2
(ϵ1 = 0, leftmost column) becomes unstable, as originally documented in

Chapter 3. As a consequence, both the ground-truth classification and pa-

rameterization are not recovered by MT-WAE in the 2D layout: spheres of

different colors are mixed together (as assessed by the low NMI/ARI val-

ues, leftmost curves, Figure 5.15) and the spheres are no longer organized

along a 2D grid (as assessed by the lower SIM values, leftmost curve, Fig-

ure 5.15). In contrast, with the original Wasserstein distance between per-

sistence diagrams (ϵ1 = 1, rightmost column), up to a significant level of

noise (ϵ = 0.2), both the ground-truth classification and parameterization

are well preserved in the 2D layout generated by PD-WAE: the spheres

with the same color remain clustered (high NMI/ARI values, rightmost
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curves) and the spheres are properly arranged along a 2D grid (high SIM

values, rightmost curve).

For the recommended value of the control parameter ϵ1 (0.05, Sec-

tion B.1), MT-WAE still manages to recover well the ground-truth param-

eterization and classification, up to a noise level of ϵ = 0.1 (perfect clus-

tering, with high SIM values). For a larger value of ϵ1 (ϵ1 ≥ 0.1), the 2D

layouts generated by MT-WAE are very similar to these generated with

PD-WAE (rightmost column), with identical stability indicators (SIM and

NMI/ARI curves, bottom).

In conclusion, this experiment shows that for mild levels of noise

(ϵ < 0.1), the recommended value of ϵ1 (0.05) results in a stable MT-WAE

computation. For larger noise levels, MT-WAE provides similar stability

scores to PD-WAE for values of ϵ1 which are still reasonable in terms of

discriminative power (ϵ1 = 0.1).

5.5.4 Limitations

As discussed in Section B.1, the parameter ϵ1 of the Wasserstein distance

between merge trees (WT2 ) acts as a control knob, that balances the prac-

tical stability of the metric with its discriminative power. Specifically, for

ϵ1 = 1, we have WT2 = WD2 and WT2 is stable, but less discriminative. In

Chapter 3 we showed experimentally that for relatively low values of ϵ1

(0.05), WT2 still behaved in a stable manner in practice for reasonable noise

levels. Our overall MT-WAE framework behaves similarly. Section 5.5.3

provides a detailed empirical stability evaluation of our framework in the

presence of additive noise. In particular, this experiment shows that for

reasonable levels of additive noise ϵ (normalized with regard to the func-

tion range), typically ϵ < 0.1, the recommended default value of ϵ1 (0.05)

results in a stable MT-WAE computation. For larger noise levels (ϵ > 0.1),

MT-WAE provides similar stability scores to PD-WAE, for values of ϵ1

which are still reasonable in terms of discriminative power (ϵ1 = 0.1).

A possible direction to improve the practical stability of the framework

without having to deal with a control parameter such as ϵ1 would be to

consider branch decompositions driven by other criteria than persistence

(such as hyper-volume [CSvdP04] for instance). However, the persistence

criterion plays a central role in the Wasserstein distance between merge

trees, as discussed in Section 3.4, in particular to guarantee that interpo-

lated BDTs computed during geodesic construction can indeed be inverted

into a valid MT. Thus, other branch decomposition criteria than persis-
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tence would require to derive a completely new procedure for several key

components of our framework, such as geodesic computation or barycen-

ter estimation. This is an orthogonal research direction to this work, which

we leave for future work.

Similarly to other optimization problems based on topological descrip-

tors ([TMMH14, VBT20], Chapter 3 or Chapter 4), our energy is not con-

vex. However, our experiments indicate that our initialization strategy

(Section 5.3.4) leads to relevant solutions, which can be successfully ap-

plied for visualization (Section 5.4).

Since it is based on neural networks, our approach inherits from their

intrinsic limitations. Specifically, the energy is not guaranteed to monoton-

ically decrease over the iterations. However, this theoretical limitation has

never translated into a practical limitation in our experiments. Figure 5.14

provides a detailed analysis of the energy evolution along the iterations of

our algorithm, for all our test ensembles. In particular, it shows that tem-

porary energy increases can indeed be observed, but without preventing

the network from converging overall.

Like other neural methods, our approach is conditioned by the meta-

parameters defining the network (i.e. number of layers, dimensionality of

each layer, etc.). However, we ran our experiments with fairly basic val-

ues for these meta-parameters (Section 5.3.7) and still obtained substantial

improvements over linear encoding based on PGA (Chapter 4). This in-

dicates that optimizing in the future these meta-parameters is likely to

improve the quality of our framework, however possibly at the expense of

longer computations.

5.6 Summary

In this chapter, we presented a computational framework for the Wasser-

stein Auto-Encoding of merge trees (and persistence diagrams), with ap-

plications to data reduction and dimensionality reduction. Our approach

improves previous linear attempts at merge tree encoding, by generaliz-

ing them to non-linear encoding, hence leading to lower reconstruction

errors. In contrast to traditional auto-encoders, our novel layer model

enables our neural networks to process topological descriptors natively,

without pre-vectorization. As shown in our experiments, this contribu-

tion leads not only to superior accuracy (Section 5.5.2) but also to superior

interpretability (Section 5.4.2): with our work, it is now possible to inter-

actively explore the latent space and analyze how topological features are
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transformed by the network in its attempt to best encode the ensemble.

Overall, the visualizations derived from our contribution ( Figure 5.1 and

Figure 5.9) enable the interactive, visual inspection of the ensemble, both

at a global level (with our 2D layouts) and at a feature level. Specifically,

our novel notion of feature latent importance enables the identification of the

most informative features in the ensemble.





6Conclusion

In this thesis, we focused on the development of analysis methods for

ensembles of topological descriptors. The resulting tools allow the

analysis of an ensemble of scalar fields based on their topological rep-

resentations, effectively addressing the primary challenges arising from

modern data, their ever-increasing size and complexity, by representing

them in a concise manner. This shift of representation permits to operate,

with a coarser granularity, directly on structures of the data rather than

on their tiniest details (such as pixels of an image), allowing a better and

easier interpretability of the results. Those given by our methods give in-

sights about an ensemble of datasets, by visually presenting them to end

users.

6.1 Summary of Contributions

The contributions of this thesis encompass different facets of ensemble

analysis, from the summarization of a whole ensemble with the computa-

tion of representative descriptors, to the identification of distinct patterns of

variability within it. All methods presented in this thesis are implemented

in the open-source library Topology ToolKit [TFL+
17], making them eas-

ily accessible and reusable through the various examples we also provide.

Moreover, we have provided curated and preprocessed versions of ensem-

bles of datasets from the SciVis contest available at that time (described in

Appendix A), making them readily usable in software such as ParaView

or with VTK.

Distances, Geodesics and Barycenters of Merge Trees

In order to tackle the lack of discriminability of persistence diagrams we

first proposed in Chapter 3 to extend the available tools for their anal-
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ysis to merge trees, being representations that capture more effectively

the global structure of the data by encoding the features in a hierarchi-

cal manner instead of representing them individually. We have proposed

a new distance taking into account the additional structural information

provided by merge trees and being purposely designed for the efficient

computation of geodesics and barycenters. Moreover, it generalizes the

Wasserstein distance between persistence diagrams due to a parameter al-

lowing to weight how much the hierarchical structure of the trees should

be taken into account in the computation. When the tree structures are

not taken into account, merge trees can be considered equivalent to per-

sistence diagrams, and the proposed distance thus becomes identical to

the Wasserstein distance between persistence diagrams. This parameter

can be used as a trade-off, in order to balance the stability of the diagrams

with the discriminability of the merge trees. When computing geodesics

or barycenters, in order to ensure that the core properties defining merge

trees are respected, we introduce a normalization term which enforces the

nested birth/death values of the tree hierarchy. We show the utility of

these contributions with applications such as feature tracking, temporal

reduction and the clustering of an ensemble of scalar fields based on their

merge trees.

Linear Variability Analysis of Topological Descriptors

With the aim of going beyond the simple notion of average that is the

barycenter, we have explored methods in Chapter 4 for analyzing the

variability of an ensemble of persistence diagrams or merge trees. To

achieve this, we have adapted the well-known Principal Component Anal-

ysis (PCA) framework to make it able to process natively these specific

objects. This adaptation is made through the redefinition of the low-level

geometric tools used in the Euclidean space to the Wasserstein space of

merge trees or persistence diagrams. Our method computes a basis cap-

turing the most informative geodesics (i.e. analog of straight lines in the

space of merge trees) corresponding to directions in the ensemble having

the most variability. Moreover, we adapt to our framework the correla-

tion view, a core tool in the PCA framework, indicating which features

are the most responsible for the variability. In our context, it results in

a visualization showing which structures of the ensemble vary the most.

Once again, due to the coarser granularity of topological abstractions, it

enhances the interpretability of the variability of an ensemble by focusing
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on entire structures rather than their tiniest details. This framework allows

the extension of two typical applications of PCA. First, data reduction,

where the input merge trees or diagrams are compressed, by keeping only

the computed basis and the coordinates of the input abstractions on this

basis, allowing their reconstruction given the model. Then, dimensionality

reduction, where these coordinates are used in a two-dimensional layout

showing how the members of the ensemble are arranged with each other.

Non-Linear Variability Analysis of Topological Descriptors

The linear encoding given by the adaptation of PCA to merge trees or

persistence diagrams has some limitations regarding the versatility of the

patterns it can model. Specifically, the directions of variability extracted

by linear encoding will describe constant growth or decay of structures

in the ensemble and can only find relations among structures that evolve

together in a simple linear manner. This fact motivated the exploration of

methods that could capture more complex, non-linear, patterns. To tackle

this, we have adapted in Chapter 5 a generalization of PCA, the Auto-

Encoder, allowing such extraction of non-linear patterns, to merge trees

and persistence diagrams. This adaptation was made through the devel-

opment of a novel neural network layer capable of natively processing

these topological abstractions without pre-vectorization, operating non-

linear transformations on these objects, inspired by those being done on

vectors in Euclidean space with usual neural network layers. The versa-

tility of our optimization procedure was shown through the introduction

of two penalty terms, to help preserve in the latent space the distances of

the original space as well as their clusters. We extended, using the new

proposed method, the applications of the previous contribution, data re-

duction and dimensionality reduction. Compared to the linear encoding,

this method allows an improvement of 23% in average regarding clus-

tering preservation metrics and 10% for the distance preservation metric

when choosing our best model for each of these categories of metrics.

6.2 Discussion

Some limitations regarding the different contributions of this thesis were

already discussed in the corresponding chapters. However, we would

like here to add or emphasize some restrictions of our work and possible

solutions that could be explored to solve them.
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The main limitation regarding the use of merge trees in our work is

probably their lack of theoretical stability. For instance, as mentionned

in Chapter 3, saddle-swaps could change the tree hierarchy and therefore

forbid some matchings between structures that would have made sense

from an application perspective. Moreover, the proposed distance be-

tween merge trees can be unstable when high level of noise is present

in the data. To tackle these issues, we have shown experimentally that

these instabilities can be mitigated using the saddle-merging parameter,

allowing to choose a trade-off between stability and discriminability de-

pending on the necessities of the application. We have shown empirically

(Figure 3.13 and Figure 5.15) that even for small values of this parameter,

when discriminability is preferred over stability, that the proposed metric

between merge trees still remains stable under reasonnable noise levels.

Other strategies could be explored to tackle these instabilities. For in-

stance, the size of the domain, in terms of number of simplices, impacts

directly the number of features that are only due to noise, hence their im-

pact on the metric. The usage of usual methods of noise removal such

as averaging values could be studied, in addition to other mechanisms,

in a pre-processing step for topological methods. However it could sig-

nificantly alter sharp and thin structures if the averaging is too wide and

introduces approximations on the birth and death values of structures.

The impact of noise-related features on the metric is especially relevant

when the Wasserstein parameter p is set to low values, like 2 in our work,

implying that the metric is sensitive to even the smallest differences, pos-

sibly those coming from noise in the data. Increasing p will give more

weight to the larger discrepancies hence possibly not taking into account

the noise if the latter is not too important. A high value of p leads to a

metric with stronger stability properties but being less informative, when

using the extreme value p = ∞, only the maximum difference is taking

into account, providing very little information about the comparison of

two scalar fields. Moreover, the definition and computation of geodesics

and barycenters are simplified by the fact that p = 2, altering this param-

eter would necessitate a redefinition of these concepts.

Using another value for the p parameter will however not tackle the

structural instabilities of the merge tree hierarchy like saddle-swap.One

line of research that was explored recently was to use other branch de-

compositions than the persistence-based one [BYM+
14, WLG22]. These

methods involve the search for a good branch decomposition, usually min-

imizing the distance, hence tackling the structural instabilities (that usu-
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ally implies a higher distance) but at the cost of a search space becoming

extremely large. Moreover, taking other branch decompositions than the

persistence-based one removes all relations with the Wasserstein distance

between persistence diagrams that assigns persistence pairs with each

other. Other kind of metrics were also proposed based on the tree struc-

tures [WG22, MBW14]. However, all the above-mentioned methods have

a higher complexity making them hardly praticable for real-life datasets

with merge trees having thousands of nodes like our distance can tackle.

A trade-off between these metrics and ours could be interesting to explore,

to tackle structural instabilities while being usable on real-life datasets.

Another main limitation of our work is due to the computation time

of our methods whose bottleneck is usually the distance computation be-

tween topological abstractions, especially in our last contribution involv-

ing lot of distance computations. We tackled this problem by parallelizing

the distances that could be parallelized, by using the Auction algorithm

instead of the classical Munkres method being much slower and by re-

moving the low persistence pairs that are usually not important in visual-

ization applications. Still, there is room for improvement, one possibility

would be to use the Sinkhorn algorithm to solve optimal transport prob-

lems [Cut13] being known for its efficiency. However, this method usually

does not lead to exact one-to-one assignments between the structures of

the topological abstractions being a key property needed for interpretabil-

ity in visualization tasks. Another possiblity that could be interesting

would be to develop approximation methods for the distance computa-

tion of topological abstractions. [VBT20] explored this possibility for per-

sistence diagrams using progressive mechanisms resulting in significantly

faster computation. However, when dealing with merge trees, we usu-

ally have many small assignment problems instead of a single large one

indicating that such mechanisms may not be as effective as it is for persis-

tence diagrams. We could also look at variants of the Wasserstein distance

such as the Sliced Wasserstein distance [RPDB12] being much faster and

bounded by above by the Wasserstein distance. This method does not,

however, directly gives an assignment between the structures of the dia-

grams. The computation of a barycenter under this metric was studied in

[BRPP15]. However, this metric has unfortunately not yet been studied for

merge trees.
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6.3 Perspectives

Generalization to other Topological Abstractions

A natural direction for future work is the extension of the proposed tools

to more advanced topological abstractions such as contour trees, Reeb

graphs or Morse-Smale complexes. Specifically, the same analogy regard-

ing the lack of discriminability of persistence diagrams compared to merge

trees can be made by comparing merge trees to Reeb graphs for instance.

These other topological abstractions capture additional information, be-

ing not captured by persistence diagrams and merge trees, that could be

used to improve results in terms of discriminability and interpretability.

However, as shown in this thesis, the extension of tools from persistence

diagrams to merge trees is not trivial and we could expect the adapta-

tion to these more advanced topological abstractions to be as complex

if not even more. The definition of informative and computable metrics

between these abstractions is still an open research problem. Regarding

contour trees, a possibility would be to extend the edit distance between

unrooted trees [DG18] by incorporating edit costs related to scalar values

of contour trees, as the edit distance between rooted trees [Zha96] was ex-

tended to merge trees [SMKN20]. However, this edit distance has a cubic

complexity that could challenge its use on real-life datasets yielding con-

tour trees with thousands of nodes. One could add constraints to this edit

distance to reduce its complexity as the unconstrained edit distance be-

tween rooted trees [ZSS92] was constrained in [Zha96]. These constraints

were actually extremely helpful in terms of complexity but also regarding

how the structural information of the trees can be taken into account in

the computation (to forbid some matchings for instance).

However, the definition of a metric does not ensure easily computable

geodesics and barycenters. As shown in our first contribution, some mech-

anisms were needed to be introduced in order to ensure the preservation

of the structural properties defining merge trees during the computation

of geodesics or barycenters.

Adaptation of other Methods to Topological Abstractions

In the continuity of our work, other methods from machine learning or

optimal transport could be adapted to topological abstractions.

For instance, variations of the k-means algorithm such as fuzzy k-

means, k-medoids, online k-means or Kohonen (self-organizing) map
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could be explored. For these last two, we believe that it could be achiev-

able without too much difficulty since online k-means consists in updat-

ing centrois using a weighted average, mechanism that can be managed

by our framework, and Kohonen map is roughly speaking online k-means

where the update of a centroid also updates, in a lesser extent, neighbor

centroids according to a grid connecting them. The k-medoids method

is known to be more complex and computationally expensive even for

vectors in Euclidean space. An approximation is usually made such as

Partitioning Around Medoids (PAM) [kme90], since the original problem

is NP-hard. The adaptation to persistence diagrams or merge trees seems

more complex, especially since the distance computation for these objects

is the bottleneck in terms of computation time and this method requires a

lot of them. A naive and easy approach would be to adapt PAM to these

topological abstractions, a better approach would be to develop a special-

ized method for these objects tackling this computation time bottleneck.

Fuzzy k-means was already explored for persistence diagrams [DAWL23]

and could be explored for merge trees.

Another future line of research in that context would be to adapt other

kinds of neural network layers to topological abstractions. For instance

layers specialized in time series with attention mechanism such as the re-

cent transformer layer. In the light of how we adapted the usual neural

network layer to topological abstraction in our work, a geometric interpre-

tation of these layers could help to define them in the Wasserstein space

of persistence diagrams or merge trees in order to natively process them.

Regarding optimal transport, future work could explore the use of the

Sinkhorn algorithm for optimal transport [Cut13] in our framework. The

main challenge would be to manage to have one-to-one matchings from

the solution given by this algorithm for interpretability in visualization

applications. A possibility would be to derive one-to-one matchings that

approximate the solution, for instance by using it as an initialization for

one step of the Auction algorithm. The use of this method in our frame-

work could be addressed in, at least, two different ways. A first one, where

all the small assignment problems involved in a distance between merge

trees are solved by this algorithm, however, in that case it is not clear if

the improvement over the Auction algorithm would be significant due to

the small size of the assigment problems. A second one, looking much

more difficult, where a single assignment problem is solved, including the

BDTs isomorphism constraint in the matrix scaling algorithm. Another

line of research would be to adapt optimal transport projection methods
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such as the Sliced Wasserstein distance [RPDB12] or the Projection Pur-

suit [MKZ+
19] to merge trees. Once again, it could be done locally, on all

assigment problems, or globally, by taking into account the BDTs isomor-

phism constraint. A remaining important problem would be, however, to

establish a relation between the original distance and the distance using

these methods.

Enhance Topological Abstractions with Geometric Information

Topological abstractions are extremely helpful tools to summarize in a

concise manner scalar fields and by encoding directly the structures in a

compact manner. We could however argue, in specific application scenar-

ios, that this reduction looses too much information about the geometrical

properties of the structures when encoding them with only two values,

their birth and death during the filtration. One line of research that was

explored in that direction was to add geometrical information, usually on

the persistence pairs, and use that information in the metric computation.

For instance, the geometrical lifting [SPCT18] adds the coordinates of the

critical points in the domain (usually the extremum in pratice) to the per-

sistence pairs and use this information in addition to the birth and death

values when computing distance between persistence pairs. In [SSW14]

the volume (or area) of the structure, in terms of number of simplices, is

taken into account to convery its geometric size. Inspired by [TN13], the

geodesic distance between extrema could also be used to compare struc-

tures. These methods however still only add global information on the ge-

ometry of the features. Without necessarily developping totally new rep-

resentations, another axis of development that could be interesting would

be to add an additional structure on top of the existing topological abstrac-

tions that would describe the features geometry. A motivation would be to

make a trade-off between the original data representation and the current

topological abstractions. A naive direction would be to take a subset of

the simplices constituing a structure to best describe it in a non-exhaustive

manner. A better possibility would be to parametrize in a concise manner,

with few parameters, the geometrical shape of each structure. Once these

objects are defined, a natural direction would be the definition of analysis

tools such as metrics, geodesics, barycenters and so on using these new

objects.







AAppendix: Data Specification

This appendix provides a complete specification of the ensemble

datasets used in this thesis. In particular, we document the data

provenance, its representation, its pre-processing when applicable, and

we specify the associated ground-truth classification.

All of these ensemble datasets were extracted from public repositories.

We additionally provide a set of scripts which automatically download all

of these datasets (at the exception of Asteroid impact and Cloud processes, for

which the dataset providers need to be contacted personally), pre-process

them with TTK and output them in VTK file format, with the ground-truth

classification attached to the files as meta-data (i.e. “Field Data” in the VTK

terminology). For convenience, we also provide an archive containing the

entire curated ensemble datasets (in VTK file format). All of this new

material (scripts and curated data) is located at the following address:

https://github.com/MatPont/WassersteinMergeTreesData.

Moreover, we also provide in additional material all the ensembles of

merge trees computed from these datasets (in the code archive containing

the implementation of our method).

Asteroid Impact

This ensemble is composed of 7 members, given as 3D regular grids (sam-

pled at 300× 300× 300, implicitly triangulated by TTK). It has been made

available in the context of the SciVis contest 2018 [PG18]. Each member

corresponds to the last time step of the simulation of the impact of an

asteroid with the sea at the surface of the Earth, for two configurations of

asteroid diameter. The considered scalar field is the matter density, which

is one of the variables of the simulation which discriminates well the as-

teroid from the water and the ambient air. This ensemble corresponds to a
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parameter study (in this case, studying the effect of the asteroid’s diame-

ter on the resulting wave), which is a typical task in numerical simulation.

In this application, salient maxima capture well the asteroid and large wa-

ter splashes. Thus, each member is represented by the split tree (captur-

ing maxima). The associated ground-truth classification assigns members

computed with similar asteroid diameters to the same class. Thus, the

corresponding classification task consists in identifying, for a given mem-

ber, its correct asteroid diameter class. The ground-truth classification is

as follows:

• Class 1 (3 members): yA11, yB11, yC11.

• Class 2 (4 members): yA31, yA32, yB31, yC31

Another selection of the original data has been used for the evaluation

of our temporal reduction framework (Figure 3.9). For this experiment,

we used the asteroid diameter configuration “yA31” and considered the

following time steps, organized in 4 phases (according to the SciVis contest

companion documentation [PG18]):

• Phase 1, initial state (5 time steps): 01141, 03429, 05700, 07920, 09782

• Phase 2, approach (5 time steps): 13306, 16317, 18124, 19599, 21255

• Phase 3, impact (5 time steps): 28649, 31737, 34654, 37273, 39476

• Phase 4, aftermath (5 time steps): 44229, 45793, 47190, 48557, 49978

Cloud Processes

This ensemble is composed of 12 members, given as 2D regular grids

(sampled at 1430 × 1557, implicitly triangulated by TTK). Each mem-

ber corresponds to a time step of the simulation of cloud formations

[WCG+
17]. For this application, large clouds are well captured by the

maxima of the pressure variable (pre-processed with 10 iterations of

smoothing). Thus, split trees (capturing maxima) are considered for this

ensemble. The associated ground-truth classification assigns each time

step to one of the three key phases of the simulation. The corresponding

classification task therefore consists in identifying, for each time step, to

which phase it belongs. The ground-truth classification is as follows:

• Class 1 (4 members): 0, 5, 10, 15

• Class 2 (4 members): 500, 505, 510, 515
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• Class 3 (4 members): 1000, 1005, 1010, 1015

Viscous Fingering

This ensemble is composed of 15 members, given as 3-dimensional point

clouds (representing a particle-based flow simulation). Each point cloud is

turned into a Eulerian representation of the variables by using the “Gaus-

sian Resampling” filter of ParaView, effectively transforming, via interpo-

lation [She68], each ensemble member into a 3D regular grid (sampled at

50× 50× 50, implicitly triangulated by TTK). The original data has been

made available in the context of the SciVis contest 2016 [GGH+
16]. Each

member corresponds to the last time step of the simulation of a viscous

fingering phenomenon, occurring when dissolving salt in water. The con-

sidered scalar field is the salt concentration, whose salient maxima capture

well the most prominent fingers. Thus, each member is represented by the

split tree (capturing maxima). Given the studied physical phenomenon,

the simulation approach is not deterministic, resulting in distinct outputs

for identical initial configurations. In this application, three distinct solver

resolutions have been considered, corresponding to three distinct numbers

of particles (resolution code 20: 194k particles, resolution code 30: 544k

particles, resolution code 44: 1.7M particles). Thus, this ensemble corre-

sponds to a parameter study (in this case, studying the effect of the input

resolution on the output fingering), which is a typical task in numerical

simulation. The associated ground-truth classification assigns members

with the same input resolution to the same class. Thus, the corresponding

classification task consists in identifying, for a given ensemble member, its

corresponding particle count. The ground-truth classification is as follows:

• Class 1, resolution 20 (5 members): 20run1, 20run3, 20run4, 20run5,

20run6.

• Class 2, resolution 30 (5 members): 30run1, 30run2, 30run3, 30run4,

30run5

• Class 3, resolution 44 (5 members): 30run1, 30run2, 30run3, 30run4,

30run5

Dark Matter

This ensemble is composed of 40 members, given as 3-dimensional point

clouds (representing a particle-based simulation). Each point cloud is



176 Appendix A. Appendix: Data Specification

turned into a Eulerian representation of the variables by using the “Gaus-

sian Resampling” filter of ParaView, effectively transforming, via interpo-

lation [She68], each ensemble member into a 3D regular grid (sampled

at 100× 100× 100, implicitly triangulated by TTK). The original data has

been made available in the context of the SciVis contest 2015 [HGTS15].

Each member corresponds to a time step of a simulation of the universe

formation, where regions of high concentration of dark matter form a fil-

ament structure known as the cosmic web. The considered scalar field is

therefore dark matter density, whose salient maxima capture well large

clusters of galaxies. Thus, each member is represented by the split tree

(capturing maxima). The associated ground-truth classification assigns

each time step to one of the four key phases of the simulation. The cor-

responding classification task therefore consists in identifying, for each

time step, to which phase it belongs. The ground-truth classification is as

follows:

• Class 1 (10 members): 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700,

0.0800, 0.0900, 0.1000, 0.1100

• Class 2 (10 members): 0.2700, 0.2800, 0.2900, 0.3000, 0.3100, 0.3200,

0.3300, 0.3400, 0.3500, 0.3600

• Class 3 (10 members): 0.5900, 0.6000, 0.6100, 0.6200, 0.6300, 0.6400,

0.6500, 0.6600, 0.6700, 0.6800

• Class 4 (10 members): 0.9100, 0.9200, 0.9300, 0.9400, 0.9500, 0.9600,

0.9700, 0.9800, 0.9900, 1.0000

Volcanic Eruptions

This ensemble is composed of 12 members, given as 2D regular grids

(sampled at 500× 500, implicitly triangulated by TTK). Each member cor-

responds to an observation of a volcanic eruption, obtained by satellite

imaging (as this data exhibits a bit of noise, it has been pre-simplified by

removing all saddle-maxima pairs with a persistence lower than 0.5% of

the data range). The original data has been made available in the con-

text of the SciVis contest 2014 [FHG+
14]. The considered scalar field is

the sulfur dioxide concentration, for which salient maxima correspond to

volcanic eruptions. Thus, each observation is represented by the split tree

(capturing maxima). Each member corresponds to a specific acquisition

period, itself corresponding to the eruption of one particular volcano at
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the surface of the Earth. The associated ground-truth classification assigns

observations acquired in the same period of time to the same class. The

corresponding classification task therefore consists in identifying, for each

observation (taken at a specified date), the erupting volcano it corresponds

to. The ground-truth classification is as follows:

• Class 1 (4 members): 150_am, 150_pm, 151_am, 151_pm

• Class 2 (4 members): 156_am, 156_pm, 157_am, 157_pm

• Class 3 (4 members): 164_am, 164_pm, 165_am, 165_pm

Ionization Front (3D)

This ensemble is composed of 16 members, given as 3D regular grids

(sampled at 300× 124× 124, implicitly triangulated by TTK). Each mem-

ber corresponds to a time step of a simulation of ionization front prop-

agation [TCWN08]. For this application, large ionization flares are well

captured by salient maxima of the ion concentration. Thus, split trees (cap-

turing maxima) are considered for this ensemble. The associated ground-

truth classification assigns each time step to one of the four key phases of

the simulation. The corresponding classification task therefore consists in

identifying, for each time step, to which phase it belongs. The ground-

truth classification is as follows:

• Class 1 (4 members): 0025, 0026, 0027, 0028

• Class 2 (4 members): 0075, 0076, 0077, 0078,

• Class 3 (4 members): 0125, 0126, 0127, 0128

• Class 4 (4 members): 0175, 0176, 0177, 0178,

Ionization Front (2D)

This ensemble is a 2D version of the above ensemble, where the dataset

providers have selected a 2D slice in the center of the volume (sampled at

600× 248). The associated classification task is therefore identical.

Earthquake

This ensemble is composed of 12 members, given as 3D regular grids

(sampled at 375× 188× 50, implicitly triangulated by TTK). Each mem-

ber corresponds to a time step of the simulation of an earthquake at the
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San Andreas fault [ODM+
06]. For this application, the shock wave can be

tracked with the local maxima of the wave front velocity magnitude (this

scalar field is pre-processed to pre-simplify all saddle-maxima pairs with

a persistence smaller than 0.05% of the data range). Thus, split trees (cap-

turing maxima) are considered for this ensemble. The associated ground-

truth classification assigns each time step to one of the three key phases

of the simulation. The corresponding classification task therefore consists

in identifying, for each time step, to which phase it belongs. The ground-

truth classification is as follows:

• Class 1 (4 members): 002700, 002900, 003100, 003300

• Class 2 (4 members): 007700, 007900, 008100, 008300

• Class 3 (4 members): 011700, 011900, 012100, 012300

Isabel

This ensemble is composed of 12 members, given as 3D regular grids

(sampled at 250× 250× 50, implicitly triangulated by TTK). Each mem-

ber corresponds to a time step of the simulation of the Isabel hurricane

[WBKS04]. This ensemble has been used in previous work [FFST18,

VBT20] and the corresponding VTK files are available at the following ad-

dress: https://github.com/julesvidal/wasserstein-pd-barycenter. In this

application, the eyewall of the hurricane is typically characterized by high

wind velocities, well captured by the the maxima of the flow velocity.

Thus, split trees (capturing maxima) are considered for this ensemble. The

associated ground-truth classification assigns each time step to one of the

three key phases (formation, drift, landfall) of the hurricane simulation.

The corresponding classification task therefore consists in identifying, for

each member, to which key phase it belongs. The ground-truth classifica-

tion is as follows:

• Class 1 (4 members): 2, 3, 4, 5

• Class 2 (4 members): 30, 31, 32, 33

• Class 3 (4 members): 45, 46, 47, 48

https://github.com/julesvidal/wasserstein-pd-barycenter
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Starting Vortex

This ensemble is composed of 12 members, given as 2D regular grids

(sampled at 1500× 1000, implicitly triangulated by TTK). It has been gen-

erated with the Gerris flow solver [Pop06] and was provided in previous

work [FFST18, VBT20]. It is available at the following address: https:

//github.com/julesvidal/wasserstein-pd-barycenter. The data models

flow turbulence behind a wing, for two ranges of wing inclination angles.

The considered scalar field is the orthogonal component of the curl of

the flow velocity. This ensemble corresponds to a parameter study (in this

case, studying the effect of the wing configuration on turbulence), which is

a typical task in numerical simulation. In this application, salient extrema

are typically considered as reliable estimations of the center of vortices.

Thus, each run is represented by two merge trees (the join tree – capturing

minima, and the split tree, capturing maxima), which are processed inde-

pendently by our algorithms. The associated ground-truth classification

assigns members computed with similar inclination angles to the same

class. The corresponding classification task therefore consists in identi-

fying, for a given ensemble member, its correct wing configuration class.

The ground-truth classification is as follows:

• Class 1 (6 members): Angle=2, Angle=3, Angle=4, Angle=5, An-

gle=6, Angle=8

• Class 2 (6 members): Angle=38, Angle=39, Angle=40, Angle=41, An-

gle=42, Angle=43

Sea Surface Height

This ensemble is composed of 48 members, given as 2D regular grids

(sampled at 1440 × 720, implicitly triangulated by TTK). Each member

corresponds to an observation of the sea surface height at the surface of

the Earth, taken in January, April, July and October 2012. The original

data can be found at the following address: https://ecco.jpl.nasa.gov/

products/all/. This ensemble has been used in previous work [FFST18,

VBT20] and the corresponding VTK files are available at the following ad-

dress: https://github.com/julesvidal/wasserstein-pd-barycenter. In this

application, the features of interest are the center of eddies, which can be

reliably estimated with height extrema. Thus, each observation is repre-

sented by two merge trees (the join tree – capturing minima, and the split

https://github.com/julesvidal/wasserstein-pd-barycenter
https://github.com/julesvidal/wasserstein-pd-barycenter
https://ecco.jpl.nasa.gov/products/all/
https://ecco.jpl.nasa.gov/products/all/
https://github.com/julesvidal/wasserstein-pd-barycenter
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tree, capturing maxima), which are processed independently by our al-

gorithms. The associated ground-truth classification assigns observations

acquired in the same month to the same class. The corresponding classifi-

cation task therefore consists in identifying, for each observation (taken at

a specified date), the season in which it has been acquired. The ground-

truth classification is as follows:

• Class 1 (12 members): 20120111, 20120115, 20120116, 20120117,

20120118, 20120119, 20120120, 20120121, 20120123, 20120128,

20120129

• Class 2 (12 members): 20120419, 20120420, 20120421, 20120422,

20120423, 20120424, 20120425, 20120426, 20120427, 20120428,

20120429, 20120430

• Class 3 (12 members): 20120711, 20120712, 20120713, 20120714,

20120715, 20120716, 20120717, 20120718, 20120719, 20120720,

20120721, 20120722

• Class 4 (12 members): 20121008, 20121009, 20121010, 20121011,

20121012, 20121016, 20121017, 20121018, 20121019, 20121020,

20121022, 20121023

Vortex Street

This ensemble is composed of 45 members, given as 2D regular grids

(sampled at 300× 100, implicitly triangulated by TTK). It has been gen-

erated with the Gerris flow solver [Pop06] and was provided in previous

work [FFST18, VBT20]. It is available at the following address: https:

//github.com/julesvidal/wasserstein-pd-barycenter. The data models

flow turbulence behind an obstacle. The considered scalar field is the

orthogonal component of the curl of the flow velocity, for 5 fluids of dif-

ferent viscosity. This ensemble corresponds to a parameter study (in this

case, studying the effect of viscosity on turbulence), which is a typical task

in numerical simulation. In this application, salient extrema are typically

considered as reliable estimations of the center of vortices. Thus, each run

is represented by two merge trees (the join tree – capturing minima, and

the split tree, capturing maxima), which are processed independently by

our algorithms. The associated ground-truth classification assigns mem-

bers computed with similar viscosities to the same class. The correspond-

ing classification task therefore consists in identifying, for a given ensem-

https://github.com/julesvidal/wasserstein-pd-barycenter
https://github.com/julesvidal/wasserstein-pd-barycenter
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ble member, its correct viscosity class. The ground-truth classification is

as follows:

• Class 1 (9 members): Viscosity=100.0, Viscosity=100.1, Viscos-

ity=100.2, Viscosity=100.3, Viscosity=100.4, Viscosity=100.5, Viscos-

ity=100.6, Viscosity=100.7, Viscosity=100.9

• Class 2 (9 members): Viscosity=160.0, Viscosity=160.1, Viscos-

ity=160.2, Viscosity=160.3, Viscosity=160.4, Viscosity=160.5, Viscos-

ity=160.6, Viscosity=160.7, Viscosity=160.8

• Class 3 (9 members): Viscosity=200.0, Viscosity=200.1, Viscos-

ity=200.2, Viscosity=200.3, Viscosity=200.4, Viscosity=200.5, Viscos-

ity=200.6, Viscosity=200.7, Viscosity=200.8

• Class 4 (9 members): Viscosity=50.0, Viscosity=50.1, Viscosity=50.2,

Viscosity=50.3, Viscosity=50.5, Viscosity=50.6, Viscosity=50.7, Vis-

cosity=50.8, Viscosity=50.9

• Class 5 (9 members): Viscosity=60.1, Viscosity=60.2, Viscosity=60.3,

Viscosity=60.4, Viscosity=60.5, Viscosity=60.6, Viscosity=60.7, Vis-

cosity=60.8, Viscosity=60.9





BAppendix: Parameter analysis

In this appendix, we study the practical effect of the pre-processing pa-

rameters of our approaches. In particular, we extend the empirical

stability evaluation of our metric (Section 3.3) with regard to all the pre-

processing parameters, we illustrate their effect on geodesic computation

(Section 3.4) and on the specific task of MT-PGA computation (Section 4.2).

B.1 Interpretation

The first pre-processing parameter of our approaches is ϵ1 ∈ [0, 1]. It dic-

tates the merge of saddles in the input trees, to mitigate saddle swap in-

stabilities, as previously documented by Sridharamurthy et al. [SMKN20].

Adjacent saddles in the input trees are merged if their relative difference

in scalar value (relative to the largest function difference between adjacent

saddles) is smaller than ϵ1. For ϵ1 = 0, no saddle merge is performed

whereas for ϵ1 = 1, all saddles are merged and WT2 becomes equivalent to

the L2 Wasserstein distance between persistence diagrams, noted WD2 .

The local normalization step of our framework (Section 3.4.2) guar-

antees the topological consistency of the interpolated merge trees (Fig-

ure 3.7). However, this normalization shrinks the birth/death values of

all the input branches to the interval [0, 1], irrespective of their original

persistence. To mitigate this effect, the input BDTs are pre-processed, so

that branches with small initial persistence (i.e. small branches) are not

given too much importance in the metric. In particular, small branches

are moved up the input BDT if their persistence relative to their parent

is larger than ϵ2 ∈ [0, 1]. When ϵ2 = 0, all branches are moved up to the

root of the BDT and again, WT2 becomes equivalent to WD2 . When ϵ2 = 1,

no branch is moved up the BDT and ϵ2 has no effect on the outcome (i.e.

the input BDT is left unchanged). In practice, we recommend the default

183
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value ϵ2 = 0.95: if a branch b has a nearly identical persistence to that of

its parent b′, it is moved higher in the BDT, so that its normalized per-

sistence becomes nearly identical to that of its parent b′ (instead of being

artificially larger due to the local normalization).

The parameter ϵ3 ∈ [0, 1] further restricts the application of the above

BDT pre-processing, by only considering (for displacement up the BDT)

the branches with a relative persistence (with respect to the overall data

range) smaller than ϵ3. When ϵ3 = 1, all branches are subject to the above

pre-processing and ϵ2 fully dictates the BDT pre-processing. When ϵ3 = 0,

no branch is moved up the BDT and the two parameters ϵ2 and ϵ3 have

no effect on the outcome. In practice, we recommend the default value

ϵ3 = 0.9, which prevents the most persistent branches from moving up

the BDT.

Overall, when the parameters (ϵ1, ϵ2, ϵ3) are set to the values (0, 1, 1),

the input trees are not pre-processed by the above procedures (i.e. they

are left unchanged) and their structure has a strong impact on WT2 . When

ϵ1 = 1 or when ϵ2 = 0, WT2 becomes equivalent to WD2 and the structure

of the input trees has no impact anymore on the metric. In-between values

balance the importance of the structure of the trees on the metric. We rec-

ommend the default values (0.05, 0.95, 0.9), which provides an acceptable

stability with regard to saddle swaps (mitigated by ϵ1) and which gives

a reasonable importance to small branches in the metric (controlled by ϵ2

and ϵ3, which are dependent parameters).

B.2 Metric Stability

Figure 3.13 provides an empirical stability evaluation of our new metric

WT2 , as a function of an input perturbation, modeled by a random noise of

amplitude ϵ. In particular, this experiment is achieved for several values

of ϵ1. The conclusion of this experiment is that WT2 is not stable when

ϵ1 = 0 (sudden increase in WT2 for small values of ϵ) and that it is stable

when ϵ1 = 1 (as anticipated [TMMH14]). For in-between values, WT2
is stable until a transition point (colored dots in Figure 3.13), located at

increasing noise levels (ϵ) for increasing values of ϵ1. In particular, for the

recommended default value ϵ1 = 0.05, WT2 is stable up to a perturbation

noise of amplitude 16% (of the overall data range).

In the following, we perform the same study for the other parameters

of our approach, ϵ2 and ϵ3. Figure B.1 studies the practical stability of WT2 ,

for several values of ϵ2. For this experiment, ϵ3 has been set to 1 (then,
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Figure B.1 – Empirical stability evaluation with regard to ϵ2. Given an input scalar field

fi, a noisy version f j is created by inserting a random noise of increasing amplitude ϵ (cf.

Figure 3.13). The evolution of WT2
(
B( fi),B( f j)

)
with ϵ is reported for varying values

of ϵ2.

Figure B.2 – Empirical stability evaluation with regard to ϵ3. Given an input scalar field

fi, a noisy version f j is created by inserting a random noise of increasing amplitude ϵ (cf.

Figure 3.13). The evolution of WT2
(
B( fi),B( f j)

)
with ϵ is reported for varying values

of ϵ3.
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only ϵ2 has an impact on the BDT pre-processing described in the previous

section). Moreover, ϵ1 has been set to its recommended value, 0.05. Several

curves are reported, one per ϵ2 values. For ϵ2 = 0, all branches are moved

up the BDT (irrespective of ϵ1) and WT2 becomes equivalent to WD2 and

the corresponding curve (red) exactly coincides with the light blue curve

of Figure 3.13 (ϵ1 = 1). For ϵ2 = 1, the input BDT is not pre-processed

at all and the corresponding curve (pink) exactly coincides with the cyan

curve of Figure 3.13 (obtained for the default value ϵ1 = 0.05). In-between

values of ϵ2 result in continuous transitions between these two extreme

cases (blue, green and cyan curves).

Figure B.2 studies the practical stability of WT2 , for several values of ϵ3.

For this experiment, we set ϵ1 = 0 and ϵ2 = 0, to better isolate the effect of

ϵ3. When ϵ3 = 1, all the branches of the input BDTs are subject to the BDT

pre-processing. Since ϵ2 = 0, all branches are moved up to the root and

WT2 becomes equivalent to WD2 and the corresponding curve (red) exactly

coincides with the light blue curve of Figure 3.13 (ϵ1 = 1). When ϵ3 = 0, no

branch is moved up in the input BDTs and the corresponding curve (pink)

exactly coincides with the grey curve of Figure 3.13 (ϵ1 = 0). In-between

values of ϵ3 result in transitions between these two extreme cases (blue,

green and cyan curves), with transition points (similar to Figure 3.13),

before which WT2 is stable. Note however, that since it is dependent on

ϵ2 (default value: 0.95), ϵ3 has only a very mild practical impact on the

metric.

B.3 Geodesic Analysis

Figures B.3, B.4 and B.5 respectively illustrate the effect of the parameters

ϵ1, ϵ2 and ϵ3 on the geodesics between merge trees. In particular, each

figure shows, on the left, the geodesic obtained with a disabling value of

the parameter (no effect on the computation). In contrast, the right side of

each figure shows the geodesic obtained with the recommended default

value of the parameter, to clearly visualize its impact.

Overall, as discussed in the detailed captions, these three parameters

have the effect of moving branches up the input BDTs, hence reducing the

structural impact of the trees on the metric, but also improving its stability

(as discussed in Section B.2). In the data, moving a branch up the BDT cor-

responds to only slight modifications, which consist in reconnecting max-

ima to distinct saddles. For each parameter, the resulting pre-processing

addresses cases where nearby saddles have very close function values,
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Figure B.3 – Impact of the parameter ϵ1 on geodesic computation (left: ϵ1 = 0, right: ϵ1 = 0.05). In this example (left), the

white branch in T ( fi) is not matched to the white branch in T ( f j) as they have distinct depths in the corresponding BDTs (2

versus 1). However, these features are visually similar in the data (Gaussians with the white maximum in fi and f j, bottom

left corner of the domain). With ϵ1 = 0.05 (right), the saddle of the white branch in T ( fi) gets merged with its ancestor

saddle (whose fi value was less than ϵ1 away). Consequently, the white branch gets moved up the BDT (the white branch is

attached to the main light blue branch in T ( fi), right). Since they now have identical depths in the corresponding BDTs, the

white branches of T ( fi) and T ( f j) can now be matched together (right), which results in an overall matching (and geodesic)

between these two trees which better conveys the resemblance between the two scalar fields fi and f j. Equivalently, one can

interpret this procedure of saddle merge in the input trees as a modification of the input scalar field, turning fi into f j. In

particular, this field modification disconnects the Gaussian with the white maximum from the Gaussian with the dark blue

maximum ( fi) and reconnects it to the Gaussian with the light blue maximum ( f j).

Figure B.4 – Impact of the parameter ϵ2 on geodesic computation (left: ϵ2 = 1, right: ϵ2 = 0.95). In this example (left), the

white branch in T ( fi) is not matched to the white branch in T ( f j) as they have distinct depths in the corresponding BDTs (2

versus 1). Moreover, given the function difference between the white branch’s saddle and its ancestor, that branch cannot be

moved up the BDT under the effect of the ϵ1 procedure (above). The white branch in T ( fi) has a persistence nearly identical

to its parent (cyan). Thus, after local normalization (necessary to guarantee the topological consistency of the interpolated

trees), its normalized persistence would become artificially high, which can have an undesirable effect on the metric. The BDT

pre-processing addresses this issue and moves up the BDT branches with a relative persistence to their parent larger than

ϵ2 (recommended default value: 0.95). In this example (right), the white branch in T ( fi) moves up the BDT and becomes

adjacent to the main light blue branch in T ( fi). Since they now have identical depths in the corresponding BDTs, the white

branches of T ( fi) and T ( f j) can now be matched together (right), which better conveys the resemblance between the two

scalar fields fi and f j. Equivalently, one can interpret this procedure of BDT pre-processing as a modification of the input

scalar field, turning fi into f j. In particular, this field modification disconnects the Gaussian with the white maximum from

the Gaussian with the cyan maximum ( fi) and reconnects it to the Gaussian with the light blue maximum ( f j).



188 Appendix B. Appendix: Parameter analysis

Figure B.5 – Effect of the parameter ϵ3 on geodesic computation (left: ϵ3 = 0, right: ϵ3 = 0.9). In this example (left), the

white branch in T ( fi) is not matched to the white branch in T ( f j) as they have distinct depths in the corresponding BDTs

(3 versus 1). Applying the above BDT pre-processing (ϵ2) to all branches would move the cyan branch in T ( fi) up the BDT,

which would prevent it to match to the cyan branch in T ( f j). The parameter ϵ3 restricts the application of the above BDT

pre-processing and prevents the movement of the most persistent branches (relative persistence larger than ϵ3, default: 0.9).

In this example (right), the white branch in T ( fi) moves up the BDT and becomes adjacent to the main light blue branch in

T ( fi). Since they now have identical depths in the corresponding BDTs, the white branches of T ( fi) and T ( f j) can now be

matched together (right), which results in an overall matching (and geodesic) between these two trees which better conveys

the resemblance between the two scalar fields fi and f j. Equivalently, one can interpret this procedure on the BDTs as a

modification of the input scalar field, turning fi into f j. In particular, this field modification disconnects the Gaussian with

the white maximum from the Gaussian with the dark green maximum ( fi) and reconnects it to the Gaussian with the light

blue maximum ( f j).

which impacts the stability of the metric. Similarly to Sridharamurthy et

al. [SMKN20], we mitigate this effect with ϵ1, but we also introduce ϵ2

and ϵ3 to specifically limit the importance in the metric of branches with

persistence close to that of their parent.

B.4 MT-PGA Analysis

In this section, we replicate the same experimental protocol, but this time

for the specific task of MT-PGA computation. Specifically, Figures B.6, B.7

and B.8 respectively illustrate the effect of the parameters ϵ1, ϵ2, and ϵ3 on

the MT-PGA basis.

As described in Chapter 3, in the data, moving a branch up the BDT

corresponds to only slight modifications, which consists in reconnecting

maxima to distinct saddles. For each parameter (ϵ1, ϵ2, and ϵ3), the re-

sulting pre-processing addresses cases where nearby saddles have close

function values, which impacts the stability of the metric. Similarly to

Sridaharamurthy et al. [SMKN20], we mitigate this effect with ϵ1, but we

also introduce ϵ2 and ϵ3 to specifically limit the importance in the metric

of branches with a persistence close to that of their parents Section 3.4.2.

For each figure, we study an ensemble consisting of two main clusters:
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Figure B.6 – Impact of the parameter ϵ1 on MT-PGA computation (in this example, left: ϵ1 = 0, right: ϵ1 = 0.3). Initially

(left), the red branch in the cluster B′ is not matched to the red branch in the cluster B′′ as they have distinct depths in the

corresponding BDTs (2 versus 1). However, these features are visually similar in the data (Gaussians with the red maximum

in B′ and B′′, bottom left corner of the domain). After the ϵ1 pre-processing (right), the saddle of the red branch in B′′ gets

merged with its ancestor saddle (whose scalar value was less than ϵ1 away). Consequently, the red branch gets moved up the

BDT (i.e. the red branch is attached to the main light blue branch in B′′, right). Since they now have identical depths in

the corresponding BDTs, the red branches of the sub-clusters B′ and B′′ can now be matched together (right), which results

in an overall matching between these two trees which better conveys the resemblance between the two sub-clusters B′ and

B′′. Equivalently, one can interpret this procedure of saddle merge in the input trees as a modification of the input scalar

field, turning the Gaussian mixture B′ into B′′. In particular, this field modification disconnects the Gaussian with the red

maximum from the Gaussian with the black maximum (B′) and reconnects it to the Gaussian with the light blue maximum

(B′′). Overall, after the ϵ1 pre-processing (right), the MT-PGA better distinguishes the cluster A (pink spheres, left of the

planar layout) from the cluster B (dark red spheres, right of the planar layout).

A (pink spheres, left of Figures B.6, B.7 and B.8) and B (dark red spheres,

right of Figures B.6, B.7 and B.8). These clusters have been synthesized

by considering Gaussian mixtures (such that B has one more prominent

feature than A) and by generating the other members of the ensemble

with variants of these two patterns, by inserting a random additive noise.

Specifically, the cluster B is synthesized out of 2 slightly distinct Gaus-

sian mixtures, yielding two artificial sub-clusters B′ and B′′, such that, in

each case, the red branch directly connects to a different branch in the

sub-clusters B′ and B′′. Then each figure visualizes the impact of each

parameter ϵ1, ϵ2, and ϵ3 on the displacement of the red branch, and hence

on the resulting MT-PGA basis.

Overall, as discussed in the detailed captions, these three parameters

have the effect of moving branches up the input BDTs, hence reducing the

structural impact of these branches on the metric, but also improving its

stability. In Figures B.6, B.7 and B.8, by moving the red branch up, a larger

section of the BDTs of the sub-clusters B′ and B′′ become isomorphic, and

thus, the two sub-patterns of the cluster B become closer to each other in

B and the clusters A and B become better differentiated in the MT-PGA

basis (cluster A on the left of the planar layout, pink spheres, cluster B on

the right of the planar layout, dark red spheres).
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Figure B.7 – Impact of the parameter ϵ2 on MT-PGA computation (in this example, left: ϵ2 = 1, right: ϵ2 = 0.8). Initially

(left), the red branch in B′ is not matched to the red branch in B′′ as they have distinct depths in the corresponding BDTs

(1 versus 2). The red branch in B′′ has a persistence nearly identical to its parent (cyan). Thus, after local normalization

(necessary to guarantee the topological consistency of the interpolated trees), its normalized persistence would become arti-

ficially high, which can have an undesirable effect on the metric. The BDT pre-processing addresses this issue and moves

up the BDT branches with a relative persistence to their parent larger than ϵ2. After the ϵ2 pre-processing (right), the red

branch in B′′ moves up the BDT and becomes adjacent to the main light blue branch. Since they now have identical depths

in the corresponding BDTs, the red branches of B′ and B′′ can now be matched together (right), which better conveys the

resemblance between the two sub-clusters B′ and B′′. Equivalently, one can interpret this procedure of BDT pre-processing

as a modification of the input scalar field, turning the Gaussian mixture B′ into B′′. In particular, this field modification

disconnects the Gaussian with the red maximum from the Gaussian with the cyan maximum (B′′) and reconnects it to the

Gaussian with the light blue maximum (B′). Overall, after the ϵ2 pre-processing (right), the MT-PGA better distinguishes the

cluster A (pink spheres, left of the planar layout) from the cluster B (dark red spheres, right of the planar layout).

Figure B.8 – Impact of the parameter ϵ3 on MT-PGA computation (in this example, left: ϵ3 = 0, right: ϵ3 = 0.7). Initially

(left), the red branch in B′′ is not matched to the red branch in B′ as they have distinct depths in the corresponding BDTs (1

versus 3). The parameter ϵ3 restricts the application of the above BDT pre-processing (ϵ2) and prevents the movement of the

most persistent branches (relative persistence larger than ϵ3). After the ϵ3 pre-processing (right), the red branch in B′′ moves

up the BDT and becomes adjacent to the main light blue branch. Since they now have identical depths in the corresponding

BDTs, the red branches of B′ and B′′ can now be matched together (right), which results in an overall matching between these

two trees which better conveys the resemblance between the two sub-clusters B′ and B′′. Equivalently, one can interpret this

procedure on the BDTs as a modification of the input scalar field, turning the Gaussian mixture B′ into B′′. In particular,

this field modification disconnects the Gaussian with the red maximum from the Gaussian with the cyan maximum (B′′) and

reconnects it to the Gaussian with the light blue maximum (B′). Overall, after the ϵ3 pre-processing (right), the MT-PGA

better distinguishes the cluster A (pink spheres, left of the planar layout) from the cluster B (dark red spheres, right of the

planar layout).
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Analysis of Ensembles of Topological Descriptors

Topological Data Analysis (TDA) forms a collection of tools to generically, robustly and efficiently reveal implicit

structural patterns hidden in complex datasets. These tools allow to compute a topological representation for each

member of an ensemble of datasets by encoding its main features of interest in a concise and informative manner.

A major challenge consists then in designing analysis tools for such ensembles of topological descriptors. Several

tools have been well studied for persistence diagrams, one of the most used descriptor. However, they suffer

from a lack of specificity, which can yield identical data representations for significantly distinct datasets. In this

thesis, we aimed at developing more advanced analysis tools for ensembles of topological descriptors, capable

of tackling the lack of discriminability of persistence diagrams and going beyond what was already available for

these objects. First, we adapt to merge trees, descriptors having a better specificity, the tools already available for

persistence diagrams such as distances, geodesics and barycenters. Then, we want to go beyond this notion of

average being the barycenter in order to study the variability within an ensemble of topological descriptors. We

then adapt the Principal Component Analysis framework to persistence diagrams and merge trees, resulting in

a dimensionality reduction method that indicates which structures in the ensemble are most responsible for the

variability. However, this framework allows only to detect linear patterns of variability in the ensemble. To tackle

this we propose to generalize this framework to Auto-Encoder in order to detect non-linear, i.e. more complex,

patterns in an ensemble of merge trees or persistence diagrams. Specifically, we propose a new neural network

layer capable of processing natively these objects. We present applications of all this work in feature tracking in

a time-varying ensemble, data reduction to compress an ensemble of topological descriptors, clustering to form

homogeneous groups in an ensemble, and dimensionality reduction to create a visual map indicating how the data

are organized regarding each other in the ensemble.

Analyse d’Ensembles de Descripteurs Topologiques

L’analyse topologique de données forme un ensemble d’outils visant à révéler de manière générique, robuste et

efficace les caractéristiques structurelles implicites cachées dans des ensembles de données complexes. Ces outils

permettent de calculer une représentation topologique pour chaque membre d’un ensemble de données en enco-

dant ses principales caractéristiques d’intérêt de manière concise et informative. Un défi majeur consiste alors à

concevoir des outils d’analyse pour de tels ensembles de descripteurs topologiques. Plusieurs outils ont été bien

étudiés pour les diagrammes de persistance, l’un des descripteurs les plus utilisés. Cependant, ils souffrent d’un

manque de spécificité, pouvant donner des représentations de données identiques pour des données significative-

ment différentes. Dans cette thèse, nous avons cherché à développer des outils d’analyse plus avancés pour des

ensembles de descripteurs topologiques, capables de résoudre le problème de discriminabilité des diagrammes

de persistance et d’aller au-delà de ce qui était déjà disponible pour ces objets. Tout d’abord nous adaptons aux

arbres de fusion, descripteurs ayant une meilleure spécificité, les outils déjà disponibles pour les diagrammes de

persistance tels que le calcul de distances, de géodésiques et de barycentres. Ensuite, nous souhaitons aller au-delà

de cette simple notion de moyenne qu’est le barycentre pour étudier la variabilité au sein d’un ensemble de de-

scripteurs topologiques. Nous adaptons alors le cadre de l’Analyse en Composantes Principales aux diagrammes

de persistance et aux arbres de fusion, résultant en une méthode de réduction de dimensions qui indique quelles

structures dans l’ensemble sont les plus responsables de la variabilité. Cependant, ce cadre permet uniquement

de détecter des tendances linéaires de variabilité dans l’ensemble. Pour résoudre ce problème, nous proposons de

généraliser ce cadre aux Auto-Encodeurs afin de détecter des motifs non linéaires, i.e. plus complexes, dans un

ensemble d’arbres de fusions ou de diagrammes de persistance. Plus précisément, nous proposons une nouvelle

couche de réseau de neurones capable de traiter nativement ces objets. Nous présentons des applications de ces

travaux pour le suivi de structures dans un ensemble de données variant dans le temps, pour la réduction de

données pour compresser un ensemble de descripteurs topologiques, dans le partitionnement pour former des

groupes homogènes dans un ensemble, et dans la réduction de dimensions pour créer une carte visuelle indiquant

comment les données sont organisées les unes par rapport aux autres dans l’ensemble.
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